(1)B. Tong+, J. H. Du+, L. C. Yin*, D. D. Zhang, W. M. Zhang, Y. Liu, Y. N. Wei, C. Liu, Y. Liang, D. M. Sun, L. P. Ma, H. M. Cheng, W. C. Ren*, A polymer electrolyte design enables ultralow-work-function electrode for high performance optoelectronics, Nat. Commun. 2022, 13:4987.
(2)J. H. Du, B. Tong, S. D. Yuan, N. Dai, R. Liu, D. D. Zhang, H. M. Cheng, W. C. Ren*, Advances in flexible optoelectronics based on chemical vapor deposition-grown graphene, Adv. Funct. Mater. 2022, 2203115.
(3)J. H. Du+, D. D. Zhang+, X. Wang, H. Jin, W. M. Zhang, B. Tong, Y. Liu, P. L. Burn*, H. M. Cheng, W. C. Ren*, Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene, Carbon 2021, 171: 350–358.
(4)W. M. Zhang+, J. H. Du+, Q. W. Wei?, D. D. Zhang, S. F. Pei, B. Tong, Z. B. Liu, Y. Liang, H. M. Cheng*, W. C. Ren*, Fabrication of large-area uniform nanometer-thick functional layers and their stacks for flexible quantum dot light-emitting diodes, Small Methods 2021, 2101030.
(5)S. Xue, W. M. Zhang, Q. Zhang, J. H. Du, H. M. Cheng*, W. C. Ren*, Heterostructured Ni-Mo-N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction, Carbon 2020, 165: 22–128.
(6)L. P. Ma, Z. B. Wu, L. C. Yin, D. D. Zhang, S. C. Dong, Q. Zhang, M. L. Chen, W. Ma, Z. B. Zhang, J. H. Du, D. M. Sun, K. H. Liu, X. F. Duan, D. G. Dong, H. M. Cheng, W. C. Ren*, Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes, Proc. Natl. Acad. Sci. U. S. A. 2020, 117: 25991–25998.
(7)W. M. Zhang+, J. H. Du+, Z. B. Liu, D. D. Zhang, Q. W. Wei, H. C. Liu, W. Ma, W. C. Ren*, H. M. Cheng*, Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots, Carbon 2019, 155: 243–249.
(8)D. D. Zhang+, J. H. Du+, Y. L. Hong, W. M. Zhang, X. Wang, H. Jin, P. L. Burn, J. S. Yu, M. L. Chen, D. M. Sun, M. Li, L. Q. Liu, L. P. Ma, H. M. Cheng, W. C. Ren*, A double support layer for facile clean transfer of 2D materials for high-performance electronic and optoelectronic devices, ACS Nano 2019, 13: 5513–5522.
(9)X. Xin+, C. Xu+, D. D. Zhang, Z. B. Liu, W. Ma, X. T. Qian, M. L. Chen, J. H. Du, H. M. Cheng*, W. C. Ren*, Ultrafast transition of non-uniform graphene to high-quality uniform monolayer film on liquid Cu, ACS Appl. Mater. Inter. 2019, 11: 17629–17636.
(10)T. Y. Zhao, D. D. Zhang, T. Y. Qu, L. L. Fang, Q. B. Zhu, Y. Sun, T. H. Cai, M. L. Chen, B. W. Wang, J. H. Du*, W. C. Ren, X. Yan*, Q. W. Li, S. Qiu, D. M. Sun*, Flexible 64 × 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors, ACS Appl. Mater. Inter. 2019, 11: 11699–11705.
(11)X. Wang, D. D. Zhang, H. Jin, B. Z. Poliquit, B. Philippa, R. C. R. Nagiri, J. Subbiah, D. J. Jones, W. C. Ren, J. H. Du*, P. L. Burn*, J. S. Yu,Graphene-based transparent conducting electrodes for high efficiency flexible organic photovoltaics: elucidating the source of the power losses, Solar RRL. 2019, 3(5): 1900042.
(12)S. Jiang+, P. X. Hou+, M. L. Chen, B. W. Wang, D. M. Sun, D. M. Tang, Q. Jin, Q. X. Guo, D. D. Zhang, J. H. Du, K. P. Tai, J. Tan, E. I. Kauppinen, C. Liu*, H. M. Cheng*, Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes, Sci. Adv. 2018, 4 (5): 9264.
(13)P. X. Hou, J. H. Du, C. Liu, W.C. Ren, E. I. Kauppinen, H. M. Cheng, Applications of carbon nanotubes and graphene produced by chemical vapor deposition, MRS Bulletin 2017, 42: 825–832.
(14)Z. K. Zhang+, J. H. Du+, D. D. Zhang, H. D. Sun, L. C. Yin, L. P. Ma, J. S. Chen, D. G. Ma, H. M. Cheng, W. C. Ren*, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun., 2017, 8: 14560.
(15)J. H. Du+*, H. Jin+*, Z. K. Zhang, D. D. Zhang, S. Jia, L. P. Ma, W. C. Ren, H. M. Cheng, P. Burn, E?cient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer, Nanoscale 2017, 9: 251–257.
|