人才信息库
吴欣强
性 别 最高学历 博士研究生
职 称 研究员 专家类别 博士生导师,所引进优秀学者(2005年)
部 门 材料腐蚀与防护中心,腐蚀基础与前沿研究部,中国科学院核用材料与安全评价重点实验室
通讯地址 辽宁省沈阳市沈河区文萃路62号,中国科学院金属研究所南区材料腐蚀与防护中心主楼215室
邮政编码 110016 电子邮件 xqwu@imr.ac.cn
电 话 +86-24-23915898 传 真 +86-24-23894149
简历:

教育经历:

1989.9 - 1993.7:哈尔滨船舶工程学院金属材料及热处理专业本科生,获学士学位;

1993.9 - 1996.3:哈尔滨工程大学机械学专业硕士生,获硕士学位;

1996.4 - 1999.6:中国科学院金属研究所材料学专业博士生,获博士学位。

工作经历:

1999.7 - 2001.2:中国科学院金属腐蚀与防护研究所,博士后,助研;

2001.3 - 2002.2:韩国科学技术院(KAIST)核工程系,博士后;

2002.3 - 2005.3:日本国立材料科学研究所(NIMS),特别研究员;

2005.4 - 2008.8:中国科学院金属研究所,副研究员;

2005.7:中国科学院金属研究所人才引进计划。

2008.9 - 现在:中国科学院金属研究所,研究员;

2011.4 - 现在:中国科学院金属研究,博士生导师;

2021.4 - 现在:中国科学院金属研究腐蚀基础与前沿研究部,主任

研究领域:

  长期从事核电结构材料服役损伤行为与评价技术研究。主要以能源和环境安全为背景,研究现役二代压水堆和三代大型先进压水堆核电站及四代铅冷快堆、超临界水冷堆关键设备材料的服役安全、国产化设计、冷却剂化学、在线监检测原理与方法及使役寿命评价技术;同时涉及超超临界火电机组关键材料的服役损伤评价、超临界水氧化处理新技术的开发及关键设备的选材、超临界煤气化技术关键设备的选材、超临界水热合成原理与工艺研究,以及新型耐蚀材料研发及腐蚀性能评价等工作。

  · 核电材料腐蚀损伤模拟试验装备与原位测试技术

  · 高温高压水腐蚀电化学及在线监检测技术

  · 核电冷却剂化学的作用机理与模型优化

  · 核电结构材料环境疲劳强度及寿命设计模型

  · 先进核能关键设备材料的环境相容性

  · 超临界水氧化腐蚀及水热合成

  · 新型耐蚀材料研发及腐蚀性能评价

承担科研项目情况:

  作为负责人承担了国家自然科学基金面上项目、国家重点研发项目课题、973项目子课题和专题、国家科技重大专项专题、中科院重大仪器研制项目、中科院重点部署项目子课题及来自中核集团、中广核集团、国电投集团等企业委托技术服务与开发项目50余项。近年来在高温高压水和液态金属腐蚀损伤模拟试验和在线监测技术、高温水电化学腐蚀热力学与动力学、核电冷却剂化学参数优化与控制、核反应堆堆芯燃料包壳表面污垢沉积模拟与评价、国产核电材料环境疲劳强度安全验证与环境疲劳寿命校正因子及应用方法等方面做出了一些特色与创新的工作。研究成果突破了国外的技术垄断,提升了我国核电装备材料腐蚀损伤的模拟试验与评价能力,得到国际著名核电机构如IAEA、EPRI、AECL、KAERI及国内核电设计、安审、制造、运行和研究单位的认可,已应用于现役核电厂服役安全评价、新建三代和四代核电的设计与安全审评,并有力支撑了我国自主化核电技术“华龙一号”通过英国通用设计审查。发表学术论文300余篇,SCI收录131篇,SCI引用3000余次,入选爱思唯尔2020中国高被引学者。正式发布和实施核学会团体标准9项。授权发明专利21项,实用新型专利15项。已指导毕业博士18名,硕士4名,其中4名博士生获中国科学院院长优秀奖,1名硕士生获辽宁省优秀硕士论文奖,4名研究生获国家奖学金。

社会任职:

◆ 核反应堆水化学国际咨询委员会核心成员

中国腐蚀与防护学会环境敏感断裂专业委员会副秘书长

中国腐蚀与防护学会耐蚀金属材料专业委员会委员

中国腐蚀与防护学会电网腐蚀防护与安全专业委员会委员

《中国腐蚀与防护学报》编委

《腐蚀与防护》编委

《Indian Journal of Chemical Technology》编委

《Corrosion Communications》编委

获奖及荣誉:

· 2018年获国家技术发明奖二等奖(排名2)

· 2018年获中国科学院科技促进发展奖(排名3)

· 2016年获中国核能行业协会科学技术奖(发明)一等奖(排名2)

· 2017年获中国核能行业协会科学技术奖二等奖(排名6)

· 2020年获中国标准创新贡献奖标准项目奖二等奖(排名5)

· 2019年获湖南省科学技术进步奖三等奖(排名7)

· 2017年获中国核工业集团公司科学技术奖三等奖(排名7)

· 2011年获辽宁省直属机关青年五四奖章

· 2019年获中国腐蚀与防护学会四十年贡献奖-优秀会员奖

· 2020年入选国家人才计划中青年科技创新领军人才

· 2020年入选国家高层次人才特殊支持计划科技创新领军人才

· 2021年被认定为沈阳市高层次人才杰出人才

· 2022年入选沈阳市十大科技英才

· 2022年获中国科学技术大学科教融合优秀导师奖

代表论著:

(1) C. C. Xue, Z. Y. Zhang*, J. B. Tan, X. Q. Wu, E.-H. Han, W. Ke, Effects of Zn injection on corrosion behavior and crud deposition of FeCrAl fuel cladding under subcooled nuclear boiling condition in high-temperature pressurized water, Corrosion Science, 211, 2023, 110909.

(2) Y. J. Ma, Z. Y. Zhang*, J. B. Tan, X. Q. Wu, X. Wang, E.-H. Han, W. Ke, Effect of surface roughness on low-cycle fatigue behaviors of 316LN stainless steel in borated and lithiated high-temperature pressurized water, Corrosion Science, 209, 2022, 110792.

(3) Z. Zhu, J.Tan*, X. Q. Wu, Z. Zhang, E.-H. Han, X. Wang, Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550oC, Corrosion Science, 209, 2022, 110767.

(4) L. Y. Peng, Z. Y. Zhang, J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water, Corrosion Science, 198, 2022, 110157.

(5) Z. Zhu, Q. Zhang, J. Tan*, X. Q. Wu, H. Ma, Z. Zhang, Q. Ren, E.-H. Han, X. Wang, Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration, Corrosion Science, 204, 2022, 110405.

(6) Y. J. Ma, Z. Y. Zhang*, X. Zhang, H. Yin, B. Liang, J. B. Tan, X. Q. Wu, E.-H. Han, W. Ke, Effects of strain rate on low-cycle fatigue crack growth behavior of 316LN weld metal in high-temperature pressurized water, Corrosion Science, 199, 2022, 110169.

(7) F. Q. Ning, J. B. Tan, Z. Y. Zhang, X. Wang, X. Q. Wu*, E.-H. Han, W. Ke, Nodular corrosion inside the crevice of Alloy 690 in deaerated high-temperature chloride solution, Corrosion Science, 185, 2021, 109442.

(8) J. Gao, J. B. Tan, Z. Y. Zhang, M. Jiao, X. Q. Wu*, L. C. Tang, Y. F. Huang, Effects of welding columnar grain orientation and strain rate on corrosion fatigue behavior of Alloy 52/52M weld metal in high-temperature water, Corrosion Science, 180, 2021, 109196.

(9) Z. Zhang, Z. Y. Zhang, J. B. Tan, X. Q. Wu*, Quantitatively related acoustic emission signal with stress corrosion crack growth rate of sensitized 304 stainless steel in high-temperature water, Corrosion Science, 157, 2019, 79-86.

(10) J. Gao, J. B. Tan, X. Q. Wu*, S. Xia, Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water, Corrosion Science, 152, 2019, 190-201.

(11) Z. Zhang, X. Q. Wu*, J. B. Tan, In-situ monitoring of stress corrosion cracking of 304 stainless steel in-high temperature water by analyzing acoustic emission waveform, Corrosion Science, 146, 2019, 90-98.

(12) Z. Y. Zhang, J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, J. C. Rao, Effects of temperature on corrosion fatigue behavior of 316LN stainless steel in high temperature pressurized water, Corrosion Science, 146, 2019, 80-89.

(13) J. P. Liao, J. B. Tan, X. Q. Wu*, L. C. Tang, H. Qian, Y. C. Xie, Effects of normal load on fretting corrosion fatigue of Alloy 690 in 285oC pure water, Corrosion Science, 141, 2018, 158-167.

(14) J. P. Liao, X. Q. Wu*, J. B. Tan, L. C. Tang, H. Qian, Y. C. Xie, Fretting corrosion fatigue of Alloy 690 in high-temperature pure water, Corrosion Science, 133, 2018, 423-431.

(15) D. X. Chen, E.-H. Han*, X. Q. Wu, Effects of crevice geometry on oxidation behavior of 304 stainless steel during crevice corrosion in high temperature pure water, Corrosion Science, 111, 2016, 518-530.

(16) J. B. Tan, X. Q. Wu*, E.-H. Han, X. Q. Liu, X. L. Xu, H. T. Sun, The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corrosion Science, 102, 2016, 394-404.

(17) X. Y. Zhong, X. Q. Wu*, E.-H. Han, Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water, Corrosion Science, 90, 2015, 511-521.

(18) J. B. Tan, X. Q. Wu*, E.-H. Han, We Ke, X. Q. Liu, F. J. Meng, X. L. Xu, Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water, Corrosion Science, 89, 2014, 203-213.

(19) J. B. Tan, X. Q. Wu*, E.-H. Han, We Ke, X. Q. Liu, F. J. Meng, X. L. Xu, Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corrosion Science, 88, 2014, 349-359.

(20) X. Liu, E.-H. Han*, X. Q. Wu, Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water, Corrosion Science, 78, 2014, 200-207.

(21) J. Xu, X. Q. Wu*, E.-H. Han, Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking, Corrosion Science, 73, 2013, 262-273.

(22) W. Kuang, X. Q. Wu*, E.-H. Han, Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water, Corrosion Science, 69, 2013, 2013, 197-204.

(23) X. Y. Zhong, E.-H. Han*, X. Q. Wu*, Corrosion behavior of Alloy 690 in aerated supercritical water, Corrosion Science, 66(1), 2013, 369-379.

(24) X. Liu, X. Q. Wu*, E.-H. Han, Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water, Corrosion Science, 65(12), 2012, 136-144.

(25) W. Kuang, X. Q. Wu*, E.-H. Han, Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water, Corrosion Science, 63(10), 2012, 259-266.

(26) J. Xu, E.-H. Han*, X. Q. Wu*, Acoustic emission response of 304 stainless steel during constant load test in high temperature aqueous environment, Corrosion Science, 63(10), 2012, 91-99.

(27) H. Sun, X. Q. Wu*, E.-H. Han, Y. Z. Wei, Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water, Corrosion Science, 59(6), 2012, 334-342.

(28) W. Kuang, X. Q. Wu*, E. H. Han, J. C. Rao, The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water, Corrosion Science, 53(11), 2011, 3853-3860.

(29) X. Liu, X. Q. Wu*, E.-H. Han, Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water, Corrosion Science, 53(10), 2011, 3337-3345.

(30) J. Huang, X. Liu, E.-H. Han*, X. Q. Wu*, Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water, Corrosion Science, 53(10), 2011, 3254-3261.

(31) W. Kuang, X. Q. Wu*, E. H. Han, Effect of alternately changing the dissolved Ni ion concentration on the oxidation of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 53(8), 2011, 2582-2591.

(32) J. Xu, X. Q. Wu*, E.-H. Han, Acoustic emission during pitting corrosion of 304 stainless steel, Corrosion Science, 53(4), 2011, 1537-1546.

(33) W. Kuang, X. Q. Wu*, E. H. Han, L. Ruan, Effect of nickel ion from autoclave material on oxidation behavior of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 53(3), 2011, 1107-1114.

(34) J. Xu, X. Q. Wu*, E.-H. Han, The acoustic emission during electrochemical corrosion of 304 stainless steel in H2SO4 solutions, Corrosion Science, 53(1), 2011, 448-457.

(35) W. Kuang, X. Q. Wu*, E. H. Han, The oxidation behavior of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 52(12), 2010, 4081-4087.

(36) W. Kuang, E.-H. Han*, X. Q. Wu, J. C. Rao, Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water, Corrosion Science, 52(11), 2010, 3654-3660.

(37) J. Huang, X. Q. Wu*, E.-H. Han, Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments, Corrosion Science, 52(10), 2010, 3444-3452.

(38) J. Huang, X. Q. Wu*, E.-H. Han, Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments, Corrosion Science, 51(12), 2009, 2840-2847.

(39) H. Sun, X. Q. Wu*, E.-H. Han, Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution, Corrosion Science, 51(12), 2009, 2976-2982.

(40) H. Sun, X. Q. Wu*, E.-H. Han, Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625, Corrosion Science, 51(11), 2009, 2565-2572.

(41) M. C. Sun, X. Q. Wu*, Z. E. Zhang, E.-H. Han, Oxidation of 316 stainless steel in supercritical water, Corrosion Science, 51(5), 2009, 1069-1072.

(42) X. Q. Wu*, Y. Katada, Strain rate dependence of low cycle fatigue behavior in a simulated BWR environment, Corrosion Science, 47(6), 2005, 1415-1428.

(43) X. Q. Wu*, H. M. Jing, Y. G. Zheng, Z. M. Yao, W. Ke, Resistance of molybdenum-bearing stainless steels and molybdenum-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion, Corrosion Science, 46(4), 2004, 1013-1032.

(44) X. Liu, X. Q. Wu*, E.-H. Han, Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water, Electrochimica Acta, 108, 2013, 554-565.

(45) J. Xu, X. Q. Wu*, E.-H. Han, The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment, Electrochimica Acta, 71(6), 2012, 219-226.

(46) Y. Fu, X. Q. Wu*, E.-H. Han, W. Ke, K. Yang, Z. H. Jiang, Effects of nitrogen on the passivation of high nitrogen stainless steels in acidic chloride solutions, Electrochimica Acta, 54(16), 2009, 4005-4014.

(47) Y. Fu, X. Q. Wu*, E.-H. Han, W. Ke, K. Yang, Z. H. Jiang, Effects of cold work, sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solutions, Electrochimica Acta, 54(5), 2009, 1618-1629.

(48) F. Q. Ning, J. B. Tan, Z. Y. Zhang, X. Q. Wu*, X. Wang, E.-H. Han, W. Ke, Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution, Journal of Materials Science & Technology, 66, 2021, 163-176.

(49) F. Q. Ning, X. Wang, Y. Yang, J. B. Tan*, X. Q. Wu, D. Jia, Z. Y. Zhang, E.-H. Han, Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water, Journal of Materials Science & Technology, 70, 2021, 136-144.

(50) F. Q. Ning, J. B. Tan, X. Q. Wu*, Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water, Journal of Materials Science & Technology, 47, 2020, 76-87.

(51) J. Gao, J. B. Tan, M. Jiao, X. Q. Wu*, L. C. Tang, Y. F. Huang, Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water, Journal of Materials Science & Technology, 42, 2020, 163-174.

(52) X. Y. Zhong*, X. Q. Wu*, E.-H. Han, Characteristics of oxidation and oxygen penetration of alloy 690 in 600oC aeratedsupercritical water, Journal of Materials Science & Technology, 34(3), 2018, 561-569.

(53) B. Q. Xue, J. B. Tan*, Z. Y. Zhang, X. Wang, X. Q. Wu, E.-H. Han, W. Ke, Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC, International Journal of Fatigue, 167, 2022, 1-16.

(54) J. Gao, Z. Y. Zhang, J. B. Tan, X. Q. Wu*, X. Wang, E.-H. Han, W. Ke, Differences of corrosion fatigue behaviors among 316LN base metal, 316LN heat-affected zone and 308L weld metal in a safe-end weld joint in borated and lithiated high-temperature water, International Journal of Fatigue, 148, 2021, 106223.

(55) Z. Y. Zhang, J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, Synergistic effect of mechanical and environmental damages of 316LN stainless steel under different fatigue strain amplitudes in high-temperature pressurized water, Materials Science and Engineering A, 743, 2019, 243-250.

(56) J. P. Liao, J. B. Tan, X. Q. Wu*, D. Ning, G. H. Xue, W. D. Yao, Corrosion Fatigue behavior f 304 stainless steel notched specimen in high-temperature pressurized water, Materials Science and Engineering A, 748, 2019, 137-145.

(57) S. Xu, X. Q. Wu*, E.-H. Han, W. Ke, Y. Katada, Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water, Materials Science and Engineering A, 49(1-2), 2008, 16-25.

(58) X. Q. Wu*, Y. Katada, Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high temperature water, Materials Science and Engineering A, 379(1-2), 2004, 58-71.

(59) X. Q. Wu*, I. S. Kim, Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel, Materials Science and Engineering A, 348(1-2), 2003, 309-318.

(60) X. Q. Wu*, H. M. Jing, Y. G. Zheng, Z. M. Yao, W. Ke, Z. Q. Hu, The Eutectic carbides and creep rupture strength of 25Cr20Ni heat-resistant steel tubes centrifugally cast with different solidification conditions, Materials Science and Engineering A, 293(1-2), 2000, 252-260.

(61) F. Q. Ning, J. B. Tan, Z. Y. Zhang*, X. Wang, X. Q. Wu, E.-H. Han, W. Ke, Crevice corrosion behaviors of Alloy 690 and 405 stainless steel in chloride solutions with different concentrations of thiosulfate, Journal of Nuclear Materials, 575, 2023, 154226.

(62) C. C. Xue, Y. L. Mao, Z. Y. Zhang*, J. B. Tan, X. Q. Wu, E.-H. Han, T. M. Ruan, J. G. Li, J. P. Liao, Crud deposition behavior on zirconium alloy fuel cladding in high-temperature pressurized water environments, Journal of Nuclear Materials, 568, 2022, 153899.

(63) J. B. Tan, Z. Y. Zhang, H. Zheng, X. Wang, J. Gao, X. Q. Wu*, E.-H. Han, S. L. Yang, P. T. Huang, Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plant, Journal of Nuclear Materials, 541, 2020, 152407.

(64) J. Gao, Z. Y. Zhang, J. B. Tan*, X. Q. Wu, E.-H. Han, W. Ke, Environmentally assisted fatigue behavior of 308L weld metal in borated and lithiated high-temperature water, Journal of Nuclear Materials, 539, 2020, 152365.

(65) Z. Y. Zhang, J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, J. C. Rao, Corrosion fatigue behavior and crack-tip characteristic of 316LN stainless steel in high-temperature pressurized water, Journal of Nuclear Materials, 518, 2019, 21-29.

(66) F. Q. Ning, X. Q. Wu*, J. B. Tan, Crevice corrosion behavior of Alloy 690 in high-temperature water, Journal of Nuclear Materials, 515, 2019, 326-337.

(67) J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, X. Wang, H. T. Sun, Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water, Journal of Nuclear Materials, 489, 2017, 33-41.

(68) X. Q. Wu*, Y. Katada, Cyclic cracking behavior of low-alloy pressure vessel steel in simulated BWR water, Journal of Nuclear Materials, 328(2-3), 2004, 115-123.

(69) X. Y. Zhong, X. Q. Wu*, E. H. Han, The characteristic of oxide scales on T91 tube after long-term service in an USC coal power plant, Journal of Supercritical Fluids, 72, 2012, 68-77.

(70) M. C. Sun, X. Q. Wu*, Z. E. Zhang, E. H. Han, Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water, Journal of Supercritical Fluids, 47, 2008, 309-317.

(71) X. Gao, X. Q. Wu, H. Guan, E. H. Han, Characterization of oxide films grown on 316l stainless steel exposed to H2O2-containing supercritical water, Journal of Supercritical Fluids, 42, 2007, 157-163.

(72) D. Zhao, X. Q. Wu, H. Guan, E. H. Han, Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles, Journal of Supercritical Fluids, 42, 2007, 226-233.

(73) Z. Zhang, X. Q. Wu*, J. B. Tan, Laboratory-scale identification of corrosion mechanisms by a novel pattern recognition system based on electrochemical noise measurements, Journal of the Electrochemical Society, 166(12), 2019, C284-C295.

(74) Y. Fu, X. Q. Wu*, E. H. Han, W. Ke, K. Yang, Z. H. Jiang, Influence of cold work on pitting corrosion behavior of a high nitrogen stainless steel, Journal of the Electrochemical Society, 155(8), 2008, C455-C463.

(75) Q. Guo, X. Q. Wu*, E.-H. Han, W. Ke, pH response behaviors and mechanisms of different tungsten/tungsten oxide electrodes for long-term monitoring, Journal of Electroanalytical Chemistry, 782, 2016, 91-97.

(76) Z. Zhang*, X. F. Li, Z. Y. Zhao, P. K. Bai, B. Liu, J. B. Tan, X. Q. Wu*, In-situ monitoring of pitting corrosion of Q235 carbon steel by electrochemical noise: wavelet and recurrence quantification analysis, Journal of Electroanalytical Chemistry, 879, 2020, 114776.

授权发明专利:

(1)一种管状试样高温高压水腐蚀疲劳试验装置,专利号:ZL 2018 1 0115400. 5,授权日:2021.07.23.

(2)一种热工模拟台架ECP在线监测电极及其使用方法,专利号:ZL 2015 1 0273766. 1,授权日:2017.06.20.

(3)一种能实现高温高压水电化学测试的陶瓷薄膜电极,专利号:ZL 2015 1 0141325. 6,授权日:2017.04.19.

(4)一种缝隙腐蚀模拟试验研究的人工缝隙装置及使用方法,专利号:ZL 2013 1 0474104. 1,授权日:2015.07.15.

(5)一种带高温高压循环水的慢拉伸实验装置及使用方法,专利号:ZL 2013 1 0452061.7,授权日:2016.03.02.

(6)高温高压水中疲劳试样标距段应变的原位实时监测系统,专利号:ZL 2013 1 0554160. 6,授权日:2016.01.13.

(7)一种带高温高压循环水的腐蚀疲劳试验装置,专利号:ZL 2010 1 0240899. 6,授权日:2013.10.16.

(8)实现高温高压水体系电化学测试的工作电极,专利号:ZL 2011 1 0282690. 0,授权日:2013.08.07.

(9)一种带声发射测试的高温高压循环水恒载拉伸实验装置,专利号:ZL 2011 1 0184583. 4,授权日:2013.06.19.

(10)一种高温高压水腐蚀疲劳实验样品夹具及使用方法,专利号:ZL 2010 1 0240911. 3,授权日:2013.02.13.

(11)一种高温高压水溶液pH值的测量方法,专利号:ZL 2008 1 0013139.4,授权日:2012.10.08.

(12)实现高温高压水溶液体系电化学测试的工作电极及其制备,专利号:ZL 2008 1 0011046. 8,授权日:2012.07.04.

(13)高温高压水循环控制系统及其控制方法,专利号:ZL 2009 1 0011110. 7,授权日:2012.06.27.

(14)一种隔离大气和通气密闭容器的排气装置及其应用,专利号:ZL 2008 1 0011749. 0,授权日:2012.03.21.

(15)高温高压水循环系统,专利号:ZL 2008 1 0230396. 3,授权日:2011.04.20.

(16)一种精确控制水中溶解氧含量的系统及其应用,专利号:ZL 2008 1 0012594. 2,授权日:2010.06.09.

(17)能够实现高温高压液体环境下原位光学观测的视镜及应用,专利号:ZL 2008 1 0012952. X,授权日:2010.09.08.

(18)一种实现高温高压环境下加载的装置及其应用,专利号:ZL 2008 1 0228711. 9, 授权日:2010.12.08.

(19)超临界水中纳米铁酸钴的制备方法,专利号:ZL 2007 1 0010435. 4,授权日:2009.10.28.

(20)超临界水中碳纳米管上沉积二氧化铈的制备方法,专利号:ZL 2006 1 0046313. 6,授权日:2009.05.06.

(21)高温高流速冲蚀实验装置,专利号:ZL 01106059. X,授权日:2004.11.17.

 

发布实施标准:

(1)《核电厂金属材料高温高压水腐蚀疲劳试验方法》(T/CNS 4-2018),2018年3月15日发布,2018年5月30日实施。

(2)《压水堆核电厂金属材料环境疲劳影响模型》(T/CNS 12-2019),2019年5月27日发布,2019年9月1日实施。

(3)《核电厂金属材料高温高压水中缝隙腐蚀试验方法》(T/CNS 14-2019),2019年5月27日发布,2019年9月1日实施。

(4)《核电厂金属材料高温高压水中微动疲劳试验方法》(T/CNS 21-2020),2020年4月28日发布,2020年8月1日实施。

(5)《核电厂金属材料高温高压水中腐蚀疲劳裂纹扩展试验方法》(T/CNS 21-2020)2020年4月28日发布,2020年8月1日实施。

(6)《核电厂金属材料高温高压水中环境促进开裂声发射监测试验方法》(T/CNS 52-2021),2021年7月26日发布,2021年11月1日实施。

(7)《高温高压水环境燃料包壳污垢沉积试验方法》(T/CNS 75-2022),2022年12月16日发布,2023年4月1日实施。

(8)《金属材料液态铅铋控氧环境中腐蚀浸泡试验方法》(T/CNS 77-2022),2022年12月16日发布,2023年4月1日实施。

(9)《金属材料液态铅铋控氧环境中慢拉伸试验方法》(T/CNS 78-2022),2022年12月16日发布,2023年4月1日实施。

个人网页: