[1] C.W. Zheng, D. Raabe. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Materialia. Vol. 61, pp.5504-5517 (2013).
[2] C.W. Zheng, D. Raabe, D.Z. Li. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low carbon steel by cellular automaton modeling. Acta Materialia. Vol. 60, pp.4768-4779 (2012).
[3] C.W. Zheng, N.M. Xiao, L.H. Hao, D.Z. Li, Y.Y. Li. Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel. Acta Materialia. Vol. 57, pp.2956-2968 (2009).
[4] C.W. Zheng, D.Z. Li, S.P. Lu, Y.Y. Li. On the ferrite refinement during the dynamic strain-induced transformation: a cellular automaton modeling. Scripta Materialia. Vol. 58,pp.838-841 (2008).
[5] C.W. Zheng, N.M. Xiao, D.Z. Li, Y.Y. Li. A mesoscopic modeling of the austenite static recrystallization in a low carbon steel using a coupled simulation method. Computational Materials Science. Vol. 45, pp.568-575 (2009).
[6] C.W. Zheng, N.M. Xiao, D.Z. Li, Y.Y. Li. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: a cellular automation modeling. Computational Materials Science. Vol. 44, pp.507-514 (2008).
[7] 郑成武, 兰勇军, 肖纳敏, 李殿中, 李依依. 热变形低碳钢中奥氏体静态再结晶介观尺度模拟. 金属学报. Vol. 42, pp. 474-480 (2006).
[8] N.M. Xiao, C.W. Zheng, D.Z. Li, Y.Y. Li. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Computational Materials Science. Vol. 41, pp.366-374 (2008).
[9] D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, Y.Y. Li. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels. Acta Materialia. Vol. 55, pp.6234-6249 (2007).