[1] L. P. Ma#, S. C. Dong#, H. M. Cheng, W. C. Ren*, Breaking the rate-integrity dilemma in large-area bubbling transfer of graphene by strain engineering. Adv. Funct. Mater. 2021, 2104228.
[2] L. P. Ma, Z. B. Wu, L. C. Yin, D. D. Zhang, S. C. Dong, Q. Zhang, M. L. Chen, W. Ma, Z. B. Zhang, J. H. Du, D. M. Sun, K. H. Liu, X. F. Duan, D. G. Ma, H. M. Cheng, W. C. Ren*, Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 25991.
[3] T. Aziz#, S. J. Wei#, Y. Sun, L. P. Ma*, S. F. Pei, S. C. Dong, W. C. Ren, Q. Liu, H. M. Cheng, D. M. Sun*, High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale 2021, 13, 2448.
[4] S. J. Wei, Y. B. Hao, Z. Ying, C. Xu, Q. W. Wei, S. Xue, H. M. Cheng, W. C. Ren, L. P. Ma*, Y. Zeng*, Transfer-free CVD graphene for highly sensitive glucose sensors. J Mater Sci Technol 2020, 37, 71.
[5] M. Guo, L. P. Ma, W. C. Ren, T. S. Lai*, Control of the ultrafast photo-electronic dynamics of a chemical-vapor-deposited-grown graphene by ozone oxidation. Photonics Res 2020, 8, 17.
[6] S. J. Wei#, L. P. Ma#, M. L. Chen, Z. B. Liu, W. Ma, D. M. Sun, H. M. Cheng*, W. C. Ren*, Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241.
[7] D. D. Zhang#, J. H. Du#, Y. L. Hong, W. M. Zhang, X. Wang, H. Jin, P. L. Burn, J. S. Yu, M. L. Chen, D. M. Sun, M. Li, L. Q. Liu, L. P. Ma, H. M. Cheng, W. C. Ren*, A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices. ACS Nano 2019, 13, 5513.
[8] L. P. Ma, W. C. Ren*, H. M. Cheng, Transfer methods of graphene from metal substrates: a review (Invited review). Small Methods 2019, 3, 13.
[9] L. P. Ma#, S. C. Dong#, M. L. Chen, W. Ma, D. M. Sun, Y. Gao, T. Ma, H. M. Cheng, W. C. Ren*, UV-epoxy-enabled simultaneous intact transfer and highly efficient doping for roll-to-roll production of high-performance graphene films. ACS Appl. Mater. Interfaces 2018, 10, 40756.
[10] Z. K. Zhang#, J. H. Du#, D. D. Zhang, H. D. Sun, L. C. Yin, L. P. Ma, J. S. Chen, D. G. Ma, H. M. Cheng, W. C. Ren*, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 9.
[11] X. Gan, R. T. Lv, H. Y. Zhu, L. P. Ma, X. Y. Wang, Z. X. Zhang, Z. H. Huang, H. W. Zhu, W. C. Ren, M. Terrones, F. Y. Kang*, Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. J. Mater. Chem. A 2016, 4, 13795.
[12] S. Jia, H. D. Sun, J. H. Du, Z. K. Zhang, D. D. Zhang, L. P. Ma, J. S. Chen, D. G. Ma, H. M. Cheng, W. C. Ren*, Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 2016, 8, 10714.
[13] Y. Gao, Z. B. Liu, D. M. Sun, L. Huang, L. P. Ma, L. C. Yin, T. Ma, Z. Y. Zhang, X. L. Ma, L. M. Peng, H. M. Cheng, W. C. Ren*, Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 10.
[14] J. H. Du, S. F. Pei, L. P. Ma, H. M. Cheng*, Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices. Adv. Mater. 2014, 26, 1958.
[15] J. T. Yuan#, L. P. Ma#, S. F. Pei, J. H. Du, Y. Su, W. C. Ren, H. M. Cheng*, Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. ACS Nano 2013, 7, 4233.