人才信息库
陈云
性 别 最高学历 博士研究生
职 称 研究员 专家类别 硕士生导师
部 门 材料设计与计算研究部
通讯地址 辽宁省沈阳市沈河区文化路72号,中国科学院金属研究所
邮政编码 110016 电子邮件 chenyun@imr.ac.cn
电 话 +86-24-23975362,15140153579 传 真  
简历:

教育经历:

●2002/09~2006/07,江苏大学材料科学与工程学院,金属材料工程专业,学士

2006/09~2012/07,中国科学院金属研究所,材料加工工程专业,硕博连读,工学博士

2008/12~2009/12,法国国家科研中心,普罗旺斯材料微电子纳米科学研究所(Institut Matériaux Microélectroniques Nanosciences de Provence, IM2NP),中法联合培养博士生

工作经历:

2012/07 – 2014/09,中国科学院金属研究所,材料加工模拟研究部,助理研究员

2014/10 – 2020/11,中国科学院金属研究所,材料设计与计算研究部,副研究员

2020/12 –2024/09,中国科学院金属研究所,材料设计与计算研究部,项目研究员

2024/10 –至今,中国科学院金属研究所,材料设计与计算研究部,研究员

研究领域:

●材料组织演化数值模型和高效计算方法,定量模拟与原位观察实验;

●合金凝固形核及生长动力学,合金微观和宏观偏析演化行为和控制;

●多元-多相-多场耦合相场模型及计算程序开发;

●结构材料计算和数据双驱动的成分-工艺-组织-性能机器学习算法模型与智能设计。

承担科研项目情况:

重要科研成果

      针对大型铸锻件和稀土轴承钢组织缺陷问题,围绕晶粒生长、微观偏析和固液相流动等凝固基础科学问题,突破大尺度与多场耦合计算模型算法瓶颈,在凝固理论与工艺应用上取得以下重要进展:

(1)为解决凝固多晶相场模拟计算效率低、模拟尺度小的难题,提出了界面前沿追踪方法计算晶粒取向和嵌入数学非线性预处理方法解除扩散界面层的限制,建立了快速计算多晶相场模型,在保证的精度的同时计算效率大幅度提高,在普通工作站上率先实现了厘米尺度的多晶凝固模拟,并形成软件。(Comput. Mater. Sci. 2015;2018;2023)

(2)通过跨尺度定量相场模拟发现了形核控制生长新阶段,并被原位观察实验证实,建立了凝固晶粒从形核至生长结束的三阶段生长动力学,填补了从临界晶核至稳态生长之间的理论空白,并且发现了形核控制生长阶段中隐藏的与形核过冷度有关的指纹特征信息,提出了形核过冷度精确测定的动力学新方法。(J. Alloys Compd. 2024)

(3)采用大尺度定量相场模拟研究了多晶合金凝固偏析演化行为,建立了凝固微观偏析新模型,解决了经典Scheil方程和Lever法则预测凝固成分不准确的难题(J. Mater. Sci. Technol. 2021)。

(4)建立了考虑固相运动及变形、液体流动等多场耦合相场模型,揭示了枝晶生长与其运动、变形、液体流动和夹杂物运动之间的交互作用机制及钢中夹杂物漂浮驱动通道偏析形成的起始机理(Sci. Rep. 2017;Int. J. Heat Mass Transfer 2019;J. Mater. Sci. Technol. 2020;J. Mater. Sci. 2021;J. Mater. Res. Technol. 2021)。

(5)建立了考虑夹杂物运动的两相流宏观偏析模型,在宏观尺度阐明了钢中夹杂物漂浮驱动通道偏析形成过程和条件,发展了宏观偏析理论,指导了均质钢制备技术开发(Acta Mater. 2016;Metall. Mater. Trans. A 2016;2017);统一了潜热复辉和溶质软碰撞形核停止判据,建立了孕育处理Al合金晶粒尺寸解析模型,成功实现了不同Al合金铸件晶粒尺寸的定量预测(Acta Mater. 2015)。

(6)通过耦合电场的相场模拟,发现了M50钢中粗大液析碳化物由于电阻率较大在加热过程优先选择性熔化并加速元素扩散,而在冷却过程中析出受到抑制,从而完全消除大块状一次碳化物,显著减少细化共晶碳化物,由此提出了选择性微区熔化处理新方法(J. Mater. Process. Technol. 2024;J. Mater. Sci. Technol. 2024;申请发明专利1项)。

图1 连续冷却条件下Al-4wt.%Cu合金多晶凝固2D和3D大尺度定量相场模拟

图2 提出的从形核至生长结束的晶体完整生长动力学过程示意图,以及各过程对应的晶粒形貌(J. Alloys Compd. 2024,1006,176259)

图3 原位观察实验的3D大尺度定量相场模拟,再现了实验中三阶段生长动力学,确认了所提出形核过冷度测定方法的可靠性(J. Alloys Compd. 2024,1006,176259)

图4 利用定量相场模拟研究了微观偏析演化动力学,以及受晶粒数量等的影响,并与Scheil方程和Lever法则预测结果对比,提出了一个微观偏析新模型,其预测结果与相场模拟吻合程度比其它模型都要好(J. Mater. Sci. Technol. 2021;74:155)

图5 耦合液体流动和固相晶粒运动模拟的多个晶粒生长运动过程,以及液体流动和溶质分布演化特点Sci. Rep. (2017),Int. J. Heat Mass Transfer (2019)

图6 耦合夹杂物运动、液体流动的多晶2D和3D模拟,揭示了钢锭中通道偏析在枝晶间形成的起始机制,以及夹杂物与枝晶生长之间的作用模式(5th International Conference on Advances in Solidification Processes)

图7模拟的钢中糊状区流场、固相分数、碳元素和/或夹杂物分布,及与45#钢500kg钢锭实验解剖结果对比。(Acta Mater. 2016;107:325)

图8利用选择性微区熔化(SMR)方法对铸态M50钢液析碳化物处理前后的结果对比(J. Mater. Process. Technol. (2024));

社会任职:
获奖及荣誉:

●2015年获得2014年度沈阳材料科学国家(联合)实验室青年创新一等奖

2017年入选中国科学院青促会会员

2018年入选沈阳市高层次人才青年拔尖人才

代表论著:

近期发表论文

[1]T. Gong,W. Hao,W. Fan,Y. Chen*,X.-Q. Chen,D. Li,Inhibiting primary carbide in steel by diffusion: A perspective of phase-field study,J. Mater. Sci. Technol.,2024;202: 50.

[2]W. Hao,Y. Chen*,C. Deng,T. Gong,W. Fan,Y. Guo,X.-Q. Chen,D. Li,Selective microzone remelting to reduce and refine the coarse primary carbides in high-carbon alloy steels,J. Mater. Process. Technol.,2024;331,118512.

[3]T. Gong,Y. Chen*,D. Li*,W. Hao,W. Fan,G. Reinhart,Y. Cao,X.-Q. Chen,H. Nguyen-Thi,Nucleation-dependent early growth of dendritic grains in Al-Cu alloys: The real-time observations and large-scale phase-field simulations, J. Alloys Compd. 2024;1006: 176259.

[4]H. Liu,Y. Chen*,X. Wang,Y. Guo,W. Xue,D. Li,X.-Q. Chen*. Correlating numerical modelling with experimental studies to quantify the wear resistance of high-carbon chromium bearing steel in mixed lubrication. Tribol. Int. 2023;188:108819.

[5]T. Gong, Y. Chen*,X.-Q. Chen,D. Li,G. Reinhart,H. Nguyen-Thi,J.-M. Debierre. Scaling law for growth of misoriented equiaxed Al-Cu dendrites: A phase-field study with in situ experiment validation. Comput. Mater. Sci. 2023;226:112238.

[6]C. Xu, Y. Chen*,T. Gong,Y. Shi,J. Wang,X.-q. Chen,P. Liu,Y. Guo,D. Li. Ab initio study of local structures during cooling of liquid Fe-C and Fe-Cr-C alloys. Comput. Mater. Sci. 2022;212:111572.

[7]T. Gong,Y. Chen*,S. Li,Y. Cao,D. Li,X.-Q. Chen,G. Reinhart,H. Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy. J. Mater. Sci. Technol. 2021;74:155.

[8]Y.F. Cao,Y. Chen*,D.Z. Li. Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling. Acta Mater. 2016;107:325.

[9]D. Li*,P. Wang,X.-Q. Chen,P. Fu,Y. Luan,X. Hu,H. Liu,M. Sun,Y. Chen,Y. Cao,L. Zheng,J. Gao,Y. Zhou,L. Zhang,X. Ma,C. Dai,C. Yang,Z. Jiang,Y. Liu,Y. Li. Low-oxygen rare earth steels. Nat. Mater. 2022;21:1137.

[10]邓朝辉,陈云*,巩桐兆,徐闯,陈星秋,傅排先,李殿中,高纯稀土对M50钢液析碳化物的影响. 材料研究学报,2023,DOI 10.11901/1005.3093.2022.677.

[11]李闪闪,陈云*,巩桐兆,陈星秋,傅排先,李殿中,冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响. 金属学报 2022;58:1024.

[12]J.K. Ren,Y. Chen,Y.F. Cao,M.Y. Sun*,B. Xu,D.Z. Li. Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models. J. Mater. Sci. Technol. 2020;58:171.

[13]T.Z. Gong,Y. Chen*,D.Z. Li,Y.F. Cao,P.X. Fu. Quantitative comparison of dendritic growth under forced flow between 2D and 3D phase-field simulation. Int. J. Heat Mass Transfer 2019;135:262.

[14]T.Z. Gong,Y. Chen*,Y.F. Cao,X.H. Kang,D.Z. Li. Fast simulations of a large number of crystals growth in centimeter-scale during alloy solidification via nonlinearly preconditioned quantitative phase-field formula. Comput. Mater. Sci. 2018;147:338.

[15]X.B. Qi,Y. Chen*,X.H. Kang,D.Z. Li,T.Z. Gong Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Sci. Rep. 2017;7: 45770.

[16]X.B. Qi,Y. Chen,X.H. Kang,D.Z. Li,Q. Du*. An analytical approach for predicting as-cast grain size of inoculated aluminum alloys. Acta Mater. 2015;99:337.

[17]Y. Chen*,N.M. Xiao,D.Z. Li,T.Z. Gong,H. Nguyen-Thi. The diffusion and solid-liquid phase transformation in directional solidification of alloy: A quantitative phase field characterization and real-time observation. Diffusion Foundations 2018;15:97.

[18]Y.F. Cao,Y. Chen *,P.X. Fu,H.W. Liu,D.Z. Li The Experimental Characterization and Numerical Simulation of A-Segregates in 27SiMn Steel. Metall. Mater. Trans. A. 2017;48:2260.

[19]Y.F. Cao,Y. Chen*,D.Z. Li,H.W. Liu,P.X. Fu. Comparison of channel segregation formation in model alloys and steels via numerical simulations. Metall. Mater. Trans. A 2016;47:2927.

[20]Y. Chen,X.B. Qi,D.Z. Li*,X.H. Kang,N.M. Xiao. A quantitative phase-field model combining with front-tracking method for polycrystalline solidification of alloys. Comput. Mater. Sci. 2015;104:155.

[21]X.B. Qi,Y. Chen*, X.H. Kang,D.Z. Li. The effect of natural convection on equiaxed dendritic growth: Quantitative phase-field simulation and comparison with synchrotron X-ray radiography monitoring data. Adv. Mater. Sci. Eng. 2016;2016:5286168.

[22]Y. Chen,D. Li,T. Gong,H. Hao. Efficient simulation schemes for large-scale phase-field modelling of polycrystalline growth during alloy solidification. In: D. Dao,R.J. Howlett,R. Setchi,L. Vlacic,editors. Sustainable Design and Manufacturing 2018. Cham: Springer International Publishing,2019. p.304.

[23]Y. Chen*, X.B. Qi,D.Z. Li,X.H. Kang. Prediction of melt flow effects on dendrite growth. Mater. Sci. Forum 2016;850:334.

[24]Y.F. Cao,Y. Chen*,X.P. Ma,P.X. Fu,X.H. Kang,H.W. Liu,D.Z. Li. The effect of alloy elements on the density variation of steel melt at the interdendritic region during solidification. IOP Conf. Ser.: Mater. Sci. Eng. 2016;117:012066.

[25]J.K. Ren,Y. Chen,B. Xu,M.Y. Sun*,D.Z. Li. A vector-valued phase field model for polycrystalline solidification using operator splitting method. Comput. Mater. Sci. 2019;163:37.

[26]T.-Z. Gong,Y. Chen,W.-Y. Hao,X.-Q. Chen,D.-Z. Li. Modeling segregation of Fe-C alloy in solidification by phase-field method coupled with thermodynamics. Metals 2023;13:1148

[27]T. Gong,Y. Chen*,S. Li,Y. Cao,L. Hou,D. Li,X.-Q. Chen,G. Reinhart,H. Nguyen-Thi. Equiaxed dendritic growth in nearly isothermal conditions: A study combining in situ and real-time experiment with large-scale phase-field simulation. Mater. Today Commun. 2021;28:102467.

[28]J.-K. Ren,M.-Y. Sun*,Y. Chen,B. Xu,W.-F. Liu,H.-Y. Jiang,Y.-F. Cao,D.-Z. Li. The non-dendritic microstructure arising from grain boundary formation and wetting: A phase-field simulation and experimental investigation of semi-solid deformation. Mater. Des. 2022;223:111111.

[29]H. Zhu,J. Wang,L. Wang,Y. Shi,M. Liu,J. Li,Y. Chen,Y. Ma,P. Liu,X.-Q. Chen. Segregation of Re at the γ/γ′ boundary of Ni-based single crystal superalloys revealed by first-principles calculations based Monte-Carlo simulations. J. Mater. Sci. Technol. 2023;143:54.

[30]Y. Cao,D. Li,X.-Q. Chen,C. Liu,Y. Chen,P. Fu,H. Liu,X. Ma,Y. Liu,Y. Luan,X. Hu. Inducing mechanism and model of the critical oxygen content in homogenized steel. Mater. Des. 2021;205:109723.

[31]T. Z. Gong,A. K. Boukellal,Y. Chen,J.-M. Debierre,Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications. Comptes Rendus. Mécanique 2023:1.

[32]J.-K. Ren,Y. Chen,Y.-f. Cao,B. Xu,M.-Y. Sun*,D.-z. Li. A phase-field study of the solidification process coupled with deformation. J. Mater. Sci. 2021;56:12455.

[33]J. Li,J. Liu,S.A. Baronett,M. Liu,L. Wang,R. Li,Y. Chen,D. Li,Q. Zhu,X.-Q. Chen. Computation and data driven discovery of topological phononic materials. Nat. Commun. 2021;12:1204.

[34]H. Zhu,J. Wang,Y. Chen,M. Liu,H. Ma,Y. Sun,P. Liu,X.-Q. Chen. Comprehensive ab initio study of effects of alloying elements on generalized stacking fault energies of Ni and Ni3Al. Phys. Rev. Mater. 2023;7:043602.

[35]Y. Shi,M. Liu,J. Wang,H. Ma,R. Li,Y. Chen,W. Mo,D. Li,B. Bai,X. Wang,T. Fa,X.-Q. Chen. Localized Nb clusters in U-Nb liquid alloys: An ab initio molecular dynamics study. Nuclear Materials and Energy 2021;26:100915.

[36]D. Li*,X.-Q. Chen,P. Fu,X. Ma,H. Liu,Y. Chen,Y. Cao,Y. Luan,Y. Li. Inclusion flotation-driven channel segregation in solidifying steels. Nat. Commun. 2014;5:5572.

[37]Y.F. Cao,Y. Chen,X.H. Kang,P.X. Fu,H.W. Liu,D.Z. Li. Simulations of Macrosegregation with consideration of inclusion effect in solidifying carbon steels. IOP Conf. Ser.:Mater. Sci. Eng. 2015;84:012098.

[38]Y. Shi,M. Liu,Y. Chen,X. Wang,W. Mo,D. Li,T. Fa,B. Bai,X. Wang,X.-Q. Chen. Evolution of local atomic structure during solidification of U116Nb12 liquid: An ab initio molecular dynamics study. J. Alloys Compd. 2019;787:267.

[39]Y. Chen,B. Billia,D.Z. Li*,H. Nguyen-Thi,N.M. Xiao,A.-A. Bogno. Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction. Acta Mater. 2014;66:219.

[40]Y. Chen,A.-A. Bogno,N. M. Xiao,B. Billia,X. H. Kang,H. Nguyen-Thi,X.H. Luo,D. Z. Li. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al–Cu alloy. Acta Mater. 60 (2012) 199. 

近期获得专利

(1) 陈云,邓朝辉,陈星秋,李殿中,巩桐兆,郭翼,马会,时永鹏,刘培涛,孙岩。一种合金钢大尺寸液析碳化物靶向性微区熔化处理方法,发明专利,申请日期:2023年04月14日,申请号:2023103987230。

(2) 刘昊,陈星秋,王雪东,陈云,李殿中。一种角接触机床轴承的精度寿命预测方法,发明专利,申请日期:2023年01月5日,专利号:ZL 2023 1 0020335.9。(已授权

(3) 时永鹏,刘昊,陈星秋,李殿中,陈云,王雪东,胡小强,陈响军,刘洋。一种三排滚柱式回转支承的关键结构参数设计方法,发明专利,申请日期:2022年12月29日,申请号:202211710754.7。

(4) 时永鹏,陈星秋,李殿中,陈云,胡小强。一种超大型盾构机主驱动轴承的关键结构参数设计方法,发明专利,申请日期:2023年06月30日,申请号:2023107889716。

(5) 时永鹏,刘昊,高晨,陈星秋,李殿中,陈云。一种高速角接触球轴承的关键结构参数设计方法,发明专利,申请日期:2023年06月30日,申请号:202310788963X。

(6) 高晨,陈星秋,陈云,马会,刘洋,刘昊,王雪东,时永鹏,李殿中。一种超高速角接触球轴承轻质保持架,实用新型专利,申请日期:2023年03月03日,专利号:ZL 202320382554.7。(已授权

(7) 高晨,陈星秋,陈云,马会,刘洋,刘昊,王雪东,时永鹏,李殿中。一种超高速角接触球轴承轻质保持架,发明专利,申请日期:2023年03月03日,申请号:2023101989369。

(8) 高晨,陈星秋,王雪东,陈云,刘洋,李殿中。一种消除厚壁铸件缩孔缩松缺陷的离心铸造用加热装置,实用新型专利,申请日期:2023年06月02日,专利号:ZL 202321395013.4。(已授权

(9) 高晨,陈星秋,王雪东,陈云,刘洋,李殿中。一种消除厚壁铸件缩孔缩松缺陷的离心铸造用加热装置,发明专利,申请日期:2023年06月02日,申请号:2023106499826。

登记软件著作权

(1) 陈云,巩桐兆,陈星秋,凝固组织演化相场模拟软件V1.0,登记号:2024SR0385313。

(2) 刘昊,陈云,陈星秋,角接触机床轴承精度寿命预测系统V1.0,登记号:2024SR0687709。

学术活动

(1)陈云,郝炜晔,陈星秋、李殿中,高碳铬轴承钢粗大液析碳化物的高效控制,第二届关键基础材料模拟、制备与评价技术交流会,2024年7月26-28日,哈尔滨。(邀请报告

(2)陈云,郝玮晔,巩桐兆,陈星秋,李殿中,温度梯度作用下孕育处理铝合金凝固组织预测研究,首届先进合金材料青年论坛,2024年4月12-15日,湖北宜昌。(邀请报告

(3)李殿中,陈云,特殊钢大构件制备与模拟仿真,第九届全国材料物理模拟及数值模拟学术会议,2023年7月28-31日,昆明。(大会特邀报告

(4)陈云,李殿中,巩桐兆,陈星秋,合金凝固生长动力学的新认识,新材料国际发展趋势高层论坛凝固与铸造成型技术论坛,2021年10月16-18日,宁波(邀请报告

(5)陈云,巩桐兆,任建坤,李殿中,陈星秋,合金凝固过程组织演化的多场耦合计算模拟,中国材料大学计算模拟分会,2021年7月8-11日,厦门。(邀请报告

(6)陈云*,巩桐兆,李殿中,曹艳飞,陈星秋,多晶凝固的快速计算相场模型及铀基合金跨尺度计算模拟,第四届材料基因工程高层次论坛,2020年10月21-23日,绵阳。(邀请报告

(7)陈云*,巩桐兆,李殿中,曹艳飞,陈星秋,凝固形核过冷度精确测定及等轴晶初始生长动力学,中国材料大会计算材料分会,2019年7月10-14日,成都。(邀请报告

(8)Yun Chen*, Tongzhao Gong,Dianzhong Li,and Yanfei Cao,Direct numerical simulations of flotation of light oxide inclusions in steel melt and interaction with growing dendritic crystals,5th International Conference on Advances in Solidification Processes & the 5th International Symposium on Cutting Edge of Computer Simulation of Solidification,Casting & Refining 2019,June 17-21,Salzburg,Austria. (Oral presentation)

(9)Yun Chen,Dianzhong Li,Tongzhao Gong.Large-scale phase-field simulations of alloy solidification and experimental validations,International Conference of Asia Pacific Academy of Materials 2018,Shenyang, June 19-22,2018. (邀请报告)

(10)陈云,巩桐兆,李殿中,陈星秋,合金凝固大尺度相场模拟及实验验证,中国有色金属学会2018 青年科技论坛,2018年8月21-23日,长春。(邀请报告

(11)陈云,巩桐兆,李殿中,陈星秋,合金凝固组织定量相场模拟及X射线原位观察,第十五届全国物理力学学术会议,2018年9月21-23日,合肥。(邀请报告

(12)Yun Chen*,Dianzhong Li and Tong Zhao Gong. Efficient Simulation Schemes for Large-Scale Phase-field Modelling of Polycrystalline Growth during Alloy Solidification,Sustainable Design and Manufacturing 2018 (SDM2018),June 24-27,2018,Golden Coast,Australia.(邀请报告

(13)陈云*,亓欣波,李殿中,康秀红. 合金凝固高效率多晶定量相场模型及模拟,中国材料大会计算材料分会,2015年7月10-14日,贵阳(口头报告)

(14)亓欣波,陈云*,李殿中,李殿中,康秀红. 合金凝固高效率多晶定量相场模型及模拟,中国材料大会计算材料分会,2015年7月10-14日,贵阳(口头报告)

(15)亓欣波,陈云*,李殿中. 合金凝固高效率多晶定量相场模型及模拟,中国材料大会计算材料分会,2015年7月10-14日,贵阳(口头报告)

(16)Yun Chen*,Dianzhong Li,Xiuhong Kang,Xinbo Qi,Quantitative phase-field simulations and in situ experimental observations of solidification on Al–Cu alloy,1st International Conference on Computational Design and Simulations of Materials,August 17-19,2015,Shenyang. (Poster)

(17)Y. Chen*,X. B. Qi,D. Z. Li,X. H. Kang,A high efficient quantitative phase-field model for polycrystalline solidification of alloys,The 4th International Symposium on Cutting Edge of Computer Simulation of Solidification,Casting and Refining. May 11-15,2016,Xi’an China. (Oral presentation)

(18)Y. Chen*,D. Z. Li,X. H. Kang,X. B. Qi,Quantitative phase-field modeling of microstructure evolution during solidification and comparison with in situ observation on Al–Cu alloy by synchrotron X-ray radiography,5th IMR-KIMS Joint Symposium on Light Metals,December 11-13,2014,South Korea. (Oral presentation)

(19)Y. Chen*,X. B. Qi,T. Z. Gong,D. Z. Li,X. H. Kang,The effect of solutal convection on dendritic growth in Al-4wt.%Cu alloy from initial transient to steady sate during upward directional solidification: A large-scale quantitative phase-field study,6th Decennial International Conference on Solidification Processing,July 25-28,2017,Beaumont Estate,Old Windsor,UK. (Oral presentation)

(20)Yun Chen,Xin Bo Qi,Xiu Hong Kang,Dian Zhong Li,Tong Zhao Gong,Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification,The 10th Pacific Rim International Conference On Modeling of Casting and Solidification Processes,August 21-23,2017,Bejing,China. (Poster)

个人网页: