新闻动态
·综合新闻
·科研动态
·学术活动
·媒体聚焦
·通知公告
您现在的位置:首页 > 新闻动态 > 学术活动
7.18】Lecturer: Prof. Kevin OGLE
Title: Element-resolved electrochemistry and its application to aqueous corrosion
 
2023-07-10 | 文章来源:自然环境腐蚀研究部        【 】【打印】【关闭

Title: Element-resolved electrochemistry and its application to aqueous corrosion 

Lecturer: Prof. Kevin OGLEécole Nationale Supérieure de Chimie de Paris, PSL Research University, France  

Time: 15:00-16:30, 18/07/2023  

Location南区主楼二楼东会议室 

    

Biography: Kevin Ogle is a professor at the Ecole Nationale Supérieure de Chimie de Paris, PSL University in Paris, France and a research affiliation with the Institut de Recherche de Chimie-Paris, CNRS. He earned the PhD in Chemistry from the University of Texas at Austin, his dissertation work on the kinetics of heterogenous catalysis by single crystal surfaces using operando surface analytical techniques. After several years at Lawrence Berkeley Laboratory and a brief period as professor at a liberal arts college, he entered the R&D of the European steel industry (today ArcelorMittal) in the area of corrosion and surface treatment. There he pursued fundamental research on the use of local electrochemical techniques and the development of atomic emission spectroelectrochemistry (AESEC). He joined the faculty of the ENSCP in 2005 and continues research with element resolved electrochemistry in several areas of aqueous corrosion and surface treatment processes. 

Abstract: Aqueous metallic corrosion is an electrochemical phenomenon and much of the theory and experimental techniques for predicting and assessing corrosion are based on the application of electrochemical concepts and techniques. While electrochemical measurements provide rich and meaningful kinetic information on the underlying faradaic processes, they are often insufficient to identify the chemical mechanisms of these processes, limiting their utility as predictive tools. Element-resolved electrochemistry, specifically atomic emission spectroelectrochemistry (AESEC), is an emerging technique that provides elemental resolution to conventional electrochemical methods. In this way we can quantitatively probe the “fate” of the elemental constituents of a material in real time during its reaction with an aggressive electrolyte. The kinetics of selective dissolution, surface enrichment, and non-faradaic processes such as oxide dissolution or particle detachment – not apparent in conventional electrochemical methods – may be directly measured with quantitative time resolution difficult to achieve by ex situ analysis. In this presentation we will review the methodology of AESEC and its application to a variety of aqueous corrosion phenomena including the passivation of multi-principal element alloys, anomalous hydrogen production on magnesium, and the pickling of aluminum alloys. 

 

文档附件

相关信息
联系我们 | 友情链接
地址: 沈阳市沈河区文化路72号 邮编: 110016
中国科学院金属研究所 版权所有 辽ICP备05005387号-1

官方微博

官方微信