
Composite Structures 137 (2016) 18–32
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
Multiscale modeling of macroscopic and microscopic residual stresses in
metal matrix composites using 3D realistic digital microstructure
models
http://dx.doi.org/10.1016/j.compstruct.2015.10.045
0263-8223/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel./fax: +86 24 83978908.
E-mail address: zyma@imr.ac.cn (Z.Y. Ma).
X.X. Zhang a, B.L. Xiao a, Heiko Andrä b, Z.Y. Ma a,⇑
a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
b Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany

a r t i c l e i n f o
Article history:

Keywords:
Multiscale modeling
Homogenization
Residual stress
Realistic microstructure
Boundary condition
RVE size
a b s t r a c t

This work presents a hierarchical multiscale method for predicting accurately and efficiently the macro-
scopic and microscopic residual stresses (RSes) in MMCs based on large-size realistic digital microstruc-
ture models. Effects of various conditions on the multiscale modeling are systematically studied. Results
indicate that the hierarchical multiscale model shows both a good self-consistency and a good accuracy.
Compared with the kinematic uniform boundary conditions, the static uniform boundary conditions lead
to more accurate prediction of the thermal misfit RS. The size of the volume element has significant
effects on the predicted values of the thermal misfit RS. The hierarchical multiscale model gains signifi-
cant advantages over the hybrid-semiconcurrent one with respect to both computational efficiency and
computer memory cost. The local fluctuation profiles and total variations of the total RS are dominated by
those of the thermal misfit RS at the microscale and by those of the macroscopic RS at the macroscale,
respectively.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Besides the macroscopic residual stress, significant microscopic
residual stress inherently develops in metal matrix composites
(MMCs) after thermo-elastoplastic deformation because of the dif-
ferences in the elastic modulus, the plastic deformation ability and
the coefficient of thermal expansion (CTE) between the reinforce-
ment and the matrix. The residual stress in MMCs can be signifi-
cantly negative for the properties of MMCs [1–9]. For instance,
the tensile residual stress in the matrix encourages the micro-
crack initiation [5], accelerates the fatigue crack growth rate [7,8]
and reduces the threshold of maximum stress intensity factor
[9]. Besides, residual stress can be a major factor in dimension
instability and cause serious problem for reliable precision devices
[10].

To guarantee high-performance, reliability and safety of engi-
neering design, quantitative knowledge of the residual stress is
critical. Nonetheless, both measurements and predictions of the
residual stress in MMCs are historically difficult [1], because both
the macroscopic and microscopic residual stresses are presented
[11,12].
Non-destructive methods for determining the residual stress
like the neutron diffraction and the synchrotron X-ray diffraction
are experimentally difficult and costly job [11,13]. Especially, they
suffer from inaccurate measurements of the unstrained reference
lattice parameters of aging-hardened matrices in MMCs [11,12,14].

Quantitatively computing residual stress distributions are alter-
native methods for evaluating the residual stress in MMCs. In the
past, the Eshelby method was applied to calculate the microscopic
residual stress in MMCs [11,15–17], which, however, has several
shortcomings because a lot of assumptions are made [11,17].
Besides the Eshelby method, the unit cell based finite element
method (FEM) is often used on the microscale to predict the ther-
mal misfit residual stress in MMCs [18–22]. However, a crucial
issue of the unit cell FEM is that it only deals with the microscopic
residual stress with the macroscopic residual stress being ignored.

Multiscale modeling is an arising new tool to study both the
macroscale and microscale behaviors of MMCs [23–28]. One main
advantage of multiscale modeling is that complicated initial and
boundary conditions at the macroscale can be studied for real-
life engineering problems [23,25], e.g. heat treatments, welding
and forming processes. Meanwhile, it enables one to investigate
the effects of the microscale features, such as complex
microstructure, inter- and intra-phase interactions, and interface
properties. In addition, it shares both the efficiency of the
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Nomenclature

d size ratio of microstructure domain
L side length of microstructure domain
D mean diameter of particles
X macroscale domain
x microscale domain/volume element
r stress tensor
e strain tensor
u displacement vector
t traction vector
n normal vector of boundary surface
x coordinate vector of boundary nodes
Superscripts I, II types of microscale thermo-mechanical models

ScriptsM,m M denotes macroscale or macroscopic, andmmicro-
scale or microscopic

Superscripts ep, th, eM, tM ep denotes elasto-plastic, th thermal,
eM elastic mismatch, tM thermal misfit

Superscripts b, ma and pa b denotes ma or pa, ma denotes matrix
and pa particle

Subscripts i denotes xx, yy or zz which are tensor component
index

h�i volume average function
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macroscale model and the accuracy of the microscale model [26].
Therefore, multiscale modeling provides an excellent method to
deeply understand the inherent physics of the multiscale mechan-
ics under external boundary conditions for MMCs.

In the multiscale modeling, the coupling methods by which the
microscale model is connected to the macroscale model can be
classified into two basic types [26,29–31]: concurrent and hierar-
chical (also referred to sequential or serial) methods. Besides these
two basic methods, several other methods fall in the area between
them, e.g. the semiconcurrent and the hybrid-semiconcurrent
methods [30]. In general, compared with the hierarchical method,
the concurrent method does not need explicit macroscale constitu-
tive model for the macroscale problem. However, the computa-
tional cost of the concurrent method is higher than that of the
hierarchical method. Up to now, several multiscale models based
on different coupling methods were proposed to investigate the
multiscale mechanics of MMCs.

For instance, Ghosh et al. [32] developed a hierarchical multi-
scale method for elasto-plastic analysis of heterogeneous materials
(including MMCs). Feyel [33] developed a concurrent multiscale
method, called FE2 method, for mechanical analysis of heteroge-
neous materials. Later, Özdemir et al. [34] developed a FE2 method
for thermo-mechanical analysis of heterogeneous materials.
Nonetheless, little work has yet been conducted on applying mul-
tiscale modeling to predict both the macroscopic and microscopic
residual stresses in MMCs.

Recently, Zhang et al. [31] developed a hybrid-semiconcurrent
multiscale model to compute both the macroscopic and micro-
scopic residual stresses in MMCs. The predicted residual stresses
in quenched MMC [31] agreed reasonably well with the reported
experimental results [11]. Nonetheless, this multiscale model
was based on the unit cell model and hybrid-semiconcurrent cou-
pling method. The accuracy and the efficiency of this multiscale
model need to be improved due to the following reasons.

First, the unit cell model ignores the random shape, size and
spatial distributions of the reinforcement [31,35]. Second, the unit
cell model based homogenization models introduce considerable
errors in the predicted effective material properties of MMCs
[35–40]. If these effective material properties are used in the
macroscale model, then errors are introduced in the predicted
residual stresses of MMCs [31]. Third, the computational costs of
the concurrent, semiconcurrent and hybrid-semiconcurrent meth-
ods are relatively expensive [30].

Therefore, there is a strong demand to develop multiscale mod-
els which predict accurately and efficiently the macroscopic and
microscopic residual stresses in MMCs using the realistic digital
microstructure models. The preset work aims at developing a hier-
archical multiscale method to satisfy these demands. The effects of
various conditions on the multiscale predictions are systematically
studied. These conditions include: (i) the multiscale coupling
methods, (ii) the types of macro–micro scale transition boundary
conditions, and (iii) the domain sizes of microstructures. As an
application of this hierarchical multiscale model, the residual
stresses developed during the quenching process of a 3 lm
17 vol.% SiCp/2124Al composite are studied.

2. Theory of the multiscale model

2.1. The multiscale model

The general 3D multiscale thermo-mechanical framework for
multiphase materials has been reported in the previous study
[31] and is applied in this work. The main ideas of the framework
are summarized in the following.

At the macroscale, the governing equations for heat flow and
mechanical equilibrium need to be solved with respect to the ini-
tial and boundary conditions corresponding to real engineering
problems. MMC is assumed as a continuum media at the macro-
scale and is described by a J2-flow theory of infinitesimal
thermo-elastoplasticity [41] based on the pre-computed effective
properties via computational homogenizations [40].

At the microscale, the temperature is assumed to be constant in
each volume element corresponding to the macroscale integration
point P. Each phase in MMCs is described by a J2-flow theory of
infinitesimal thermo-elastoplasticity [41]. For rigid ceramic rein-
forcement that normally undergoes only elastic deformation, the
yield stress of the reinforcement is set to a sufficient large number.

2.2. Separation of residual stresses and macro–micro scale transition
boundary conditions

Separation of different contributions to the total residual stres-
ses offers deep insight to the residual stress in the MMCs. In many
experimental/industrial cases, because of inaccurate measure-
ments of the unstrained parameters of the matrix (d0 problem),
direct measurements/calculations of the total residual stresses will
lead to significant errors [11]. In such cases it is important to mea-
sure various contributions first and then add them together to get
the total residual stresses, as shown in [12]. Such experimental
procedure requires corresponding modeling procedure. Besides, if
different contributions of the total residual stresses are addressed,
the results can be used as a guide to select the best kind of rein-
forcement with respect to optimization of the total residual stres-
ses. Because the elastic mismatch residual stress is mainly
controlled by the difference in the elastic properties between the
matrix and the reinforcement, whereas the thermal misfit residual
stress is mainly controlled by the difference in the CTE between the
phases.



Fig. 1. Schematic representation of the hierarchical multiscale model.

Fig. 2. Geometry models used in the multiscale models: (a) one-eight of the MMC plate. XOY, XOZ and YOZ planes are imposed by symmetrical displacement boundary
conditions. (b) Unit cell model UC with size ratio d � 1, (c) realistic microstructure model VE10 with d ¼ 10, 44 random particles, (d) realistic microstructure model VE20 with
d ¼ 20, 408 random particles. The mean diameter of particles is 3 lm for all microstructures.
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In the present work, two types of macro–micro scale transition
boundary conditions, i.e. the kinematic uniform boundary condi-
tions (KUBC), the static uniform boundary conditions (SUBC), are
investigated to assess their influences. Two types of microscale
models are constructed for separating the different microscopic
residual stresses [31].

The KUBC for type I microscale thermo-mechanical model that
calculates the macroscopic and elastic mismatch residual stresses
hrM

i i and hrb;eM
i i is defined by

uI
m ¼ eepM � xm ð1Þ
Definitions of all symbols are listed and explained in

Nomenclature.
The KUBC for type II microscale thermo-mechanical model that

calculates the thermal misfit residual stress hrb;tM
i i is defined by

uII
m ¼ ethM � xm ð2Þ
The SUBC for type II microscale thermo-mechanical model that

calculates the thermal misfit residual stress hrb;tM
i i is defined by

tIIm ¼ 0 � nm ð3Þ
2.3. Numerical solution method

The hierarchical coupling method is applied to reduce computa-
tional effort for solving the multiscale problem. In the hierarchical
multiscale model, the macroscale thermo-mechanical model is
solved independently of type I microscale thermo-mechanical
model. The residual vector and the tangent stiffness matrix for
all the macroscale finite element (FE) integration points are com-
puted via the pre-computed macroscale constitutive model.

For the purpose of comparison, new results of the hybrid-
semiconcurrent multiscale model reported in the previous work
[31] are also investigated. In the hybrid-semiconcurrent multiscale
model, the macroscale thermo-mechanical model and type I
microscale thermo-mechanical model are solved simultaneously
at the macroscale FE integration points for solving the macroscale
and elastic mismatch residual stresses. The residual vector and the
tangential stiffness matrix at the macroscale FE integration points
are homogenized via type I microscale thermo-mechanical model.

The illustration of the hierarchical multiscale model is shown in
Fig. 1. To assess the accuracy and efficiency of the hierarchical cou-
pling method, the unit cell based hybrid-semiconcurrent multi-
scale model (see [31]) is compared to the hierarchical multiscale
model using the same unit cell.

3. Numerical experiments

As an application of this multiscale model, the residual stresses
developed during the quenching process from 505 to 25 �C for a
3 lm 17 vol.% SiCp/2124Al composite are studied. Due to the sym-
metry of the problem, one eighth of the macroscale geometry is
taken as computational domain X, which is shown in Fig. 2(a).

Volume elements of realistic microstructure models are consid-
ered. Details about generating 3D realistic microstructure models
have been reported previously [31,42]. To assess the effects of
the size of the volume elements x, different sizes are investigated.
Here the size ratio d of a volume element is defined by

d ¼ 2L=D ð4Þ



Table 1
Explanation of abbreviations for hierarchical and hybrid-semiconcurrent multiscale models.

MICRO1 MICRO2

Coupling
method

Transition boundary
condition

Microstructure
model

Point Coupling
method

Transition boundary
condition

Microstructure
model

Point

MULTI = MACRO + HS KUBC UC P0
HS KUBC UC P1
HS KUBC UC P2
HS KUBC UC P3
HS KUBC UC P4
HS KUBC UC P5
HS KUBC UC P6 HE KUBC UC P7
HS KUBC UC P7 HE SUBC UC P7

MULTI = MACRO + HE KUBC UC P0
HE KUBC UC P1
HE KUBC UC P2
HE KUBC UC P3
HE KUBC UC P4
HE KUBC UC P5
HE KUBC UC P6
HE KUBC UC P7 HE SUBC UC P7

MULTI = MACRO + HE KUBC VE10 P0
HE KUBC VE10 P1
HE KUBC VE10 P2
HE KUBC VE10 P3
HE KUBC VE10 P4
HE KUBC VE10 P5
HE KUBC VE10 P6
HE KUBC VE10 P7 HE SUBC VE10 P7

MULTI = MACRO + HE KUBC VE20 P0
HE KUBC VE20 P1
HE KUBC VE20 P2
HE KUBC VE20 P3
HE KUBC VE20 P4
HE KUBC VE20 P5
HE KUBC VE20 P6
HE KUBC VE20 P7 HE SUBC VE20 P7

Notation explanation. MACRO: macroscale model; MACRO1: type I microscale model; MACRO2: type II microscale model; coupling method 2 {HS, HE}, HS: hybrid-
semiconcurrent method, HE: hierarchical method; transition boundary condition 2 {KUBC, SUBC}, KUBC: kinematic uniform boundary conditions, SUBC: static uniform
boundary conditions; microstructure model 2 {UC, VE10, VE20}, UC: unit cell model, VE10: volume element with size ratio 10; VE20: volume element with size ratio 20; point
2 {P0, . . .,P7}, definitions of points are list in Table 2.
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The unit cell is also investigated for comparison. The circum-
scribed spheres of particles have a mean diameter of 3 lm. All
microstructure models are shown in Fig. 2. The unit cell model
with size ratio d � 1 is named as UC; the 3D realistic microstruc-
ture models with size ratio d being 10 and 20 are named VE10
and VE20, respectively.

In the present paper, the hierarchical and hybrid-
semiconcurrent multiscale models are tagged with MULTI(cou-
pling method, microstructure model). The macroscale models are
tagged with MACRO(coupling method, microstructure model).
Type I microscale models are tagged with MICRO1(coupling
Table 2
Macroscale coordinates X

!
of eight points for multiscale models.

Points Coordinates X
!
, mm

X Y Z

P0* 1.91 0.58 7.38
P1 1.91 0.65 6.35
P2 1.77 0.37 5.42
P3 1.49 0.24 4.47
P4 1.76 0.63 2.95
P5 1.96 0.34 2.03
P6 1.74 0.54 1.17
P7** 1.79 0.67 0.18

* Near the top surface of the real MMC plate.
** Near the center of the real MMC plate. In the one eighth structure, P7 is near the

bottom boundary face.
method, microstructure model, points). Type II microscale
models are tagged with MICRO2(transition boundary condition,
microstructure model, points). The notations of coupling method,
transition boundary condition, microstructure model and points

are listed in Table 1. The macroscale coordinates X
!

of eight
points for multiscale models are listed in Table 2 and illustrated
in Fig. 2(a).

The temperature dependent material properties for 2124Al
(Young’s modulus, Poisson’s ratio, yield strength, ultimate
strength, and CTE) [40,43] and SiC (Young’s modulus, Poisson’s
ratio, and CTE) [44] are used, as the same in the previous studies
[31,40]. The effective constitutive model of the 3 lm 17 vol.%
SiCp/2124Al composite at the macroscale are determined using
the computational homogenization technique [40].

In the present work, all domains at both the macroscale and the
microscale are meshed by unstructured tetrahedrons with 4-nodes
by the Delaunay triangulation software TetGen [45]. Linear shape
functions are used. All the multiscale simulations are carried out
in MSFESL [31,40,42]. The reported experimental results [11] are
used to compare with the predictions.

4. Results and discussions

4.1. Temperature and cooling rate

The different temperature curves of points P0 and P7 shown in
Fig. 3(a) indicates that temperature gradient (inhomogeneous tem-



Fig. 3. Temperature (a) and cooling rate (b) at points P0 and P7.

Fig. 4. Macroscopic accumulated plastic strain field computed via MACRO(HE,
VE20).
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perature distribution) exists during the whole quenching process.
Besides, the different cooling rates of points P0 and P7 shown in
Fig. 3(b) reveals that the MMC plate has a gradient of cooling rate.

4.2. Plastic deformation

The inhomogeneous temperature distribution and the hetero-
geneous cooling rate cause inhomogeneous deformation in the
MMC plate. As a result, internal stresses in the MMC plate are gen-
erated [46]. When the internal stress exceeds the yield strength,
plastic deformation occurs and the internal stress is partly relaxed.

Fig. 4 shows the macroscopic accumulated plastic strain field
computed via the macroscale model MACRO(HE, VE20), in which
the MMC is modeled by a homogeneous material and described
by J2-elastoplastic theory [31,40]. Therefore, the macroscopic accu-
mulated plastic strain field corresponds to the effective material of
the MMC [31,40]. The macroscopic plastic deformation introduces
additional residual stress which reduces the macroscopic residual
stress [17,47].

Fig. 5(a) and (b) show that the microscopic plastic deformation
in the matrix, caused by both the macroscopic temperature gradi-
ent and the mismatch in elastic constants between the phases,
Fig. 5. Microscopic accumulated plastic strain fields computed via MICRO1(H
respectively, is roughly homogeneous in the volume element. This
plastic deformation causes relaxation of both the macroscopic and
elastic mismatch residual stresses [17,47]. Fig. 5(c) shows that the
microscopic plastic deformation in the matrix, caused by the mis-
match in the CTE between the phases, has large gradient. The plas-
tic deformation on or near the matrix/particle interface is much
larger than that away from the interface. This plastic deformation
causes relaxation of the thermal misfit residual stress [17,47]. It
also leads to high dislocation density near the matrix/particle
interface [48–50]. Fig. 5(a)–(c) show that the plastic deformation
near the matrix/particle interface is mainly caused by the mis-
match in the CTE between the phases.

4.3. Macroscopic residual stress

Fig. 6 shows that the evolutions of the macroscopic residual
stresses predicted via macroscale models MACRO(HE, UC) and
MACRO(HE, VE20) are close, except a little difference at the begin-
ning of the quenching process (e.g. before 1.0 s).

Fig. 7 shows that the macroscopic residual stresses predicted
directly via different macroscale models and homogenized via dif-
ferent microscale models are very close. This is important because
it proves the self-consistency of the hierarchical coupling method.
Meanwhile, the predicted profiles of the macroscopic residual
stress in the MMC in this study agree quite well with the results
from reference [51].

Fig. 7(a) shows that the predicted total variations of rM
xx across

the thickness of the MMC plate are: �233 MPa homogenized via
MICRO1(HS, UC, P0–7), �231 MPa homogenized via MICRO1(HE,
UC, P0–7), and �236 MPa computed via MACRO(HE, UC). It can be
seen that the hierarchical multiscale model MULTI(HE, UC) gives
almost the same homogenized macroscopic residual stress as the
hybrid-semiconcurrent multiscale model MULTI(HS, UC). Fig. 7(a)
also shows that the larger domain size of the microstructure, the
larger total variation of rM

xx across the thickness. It clearly shows
that the predicted total variation of rM

xx across the thickness of
the MMC plate agrees very well with the experimental result
E, VE20, P0) (a), MICRO1(HE, VE20, P7) (b), MICRO2(KUBC, VE20, P7) (c).



Fig. 6. Comparison of the evolutions of macroscopic residual stresses that are computed via MACRO(HE, UC) (a) and MACRO(HE, VE20) (b).

Fig. 7. Comparison between the computed macroscopic residual stresses from different macroscale models, the homogenized macroscopic residual stresses from different
microscale models and the determined ones via Eshelby model from Fitzpatrick et al. [11].
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[11]: �261 MPa homogenized via MICRO1(HE, VE20, P0–7),
�264 MPa computed via MACRO(HE, VE20, P0–7), and �259 MPa
measured in [11] across the half thickness from �7.5 to 0 mm.

Fig. 7(a) shows that the relative deviation about the total varia-
tion of the predicted macroscopic residual stress component xx
across the thickness of the MMC plate between the UC based and
VE20 based hierarchical multiscale models is about |233–
261|/261 � 100% � 10.7%. Therefore, to obtain more accurate pre-
dictions of the macroscopic residual stress, large sized realistic
microstructure should be used.

Fig. 7 shows that the experimental macroscopic residual stres-
ses [11] are translated into compressive by about 100 MPa because
of the inaccurate measurements of the ‘‘unstrained reference
parameter” d0 and the numerical fitting errors during the data pro-
cessing [11,31]. This problem demonstrates that using multiscale
modeling method for predicting the residual stress in MMCs is fun-
damentally important.

4.4. Elastic mismatch residual stress

Fig. 8(a)–(f) show that the profiles of the homogenized elastic
mismatch residual stress components hrb;eM

xx i, hrb;eM
yy i and hrb;eM

zz i
across the thickness of the MMC plate predicted via MICRO1(HE,
UC, P0–7) are almost the same as those predicted via MICRO1(HS,
UC, P0–7). With the hierarchical coupling method, the larger
domain size of the realistic microstructure, the larger total varia-
tions of hrb;eM

xx i and hrb;eM
yy i across the thickness of the MMC plate.

For instance, the predicted total variation of hrma;eM
xx i in the matrix

via either MICRO1(HE, UC, P0–7) or MICRO1(HS, UC, P0–7) is



Fig. 8. Comparison between homogenized elastic mismatch residual stresses using different microscale models and determined ones via Eshelby model from Fitzpatrick et al.
[11] in 2124Al (a)–(c) and SiC (d)–(f).
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�11 MPa, and that via MICRO1(HE, VE20, P0–7) is �20 MPa. It can
be seen that the UC based multiscale model greatly underestimates
the total variations of the homogenized elastic mismatch residual
stress components hrb;eM

xx i and hrb;eM
yy i across the thickness of the

MMC plate.
Fig. 8(c) and (f) show that hrb;eM

zz i predicted via MICRO1(HE,
VE20, P0–7) are about zero across the thickness of the MMC plate
and show much less variations, as one expected [11]. However,
the ones predicted based on UC and VE10 are not. Fig. 8
(c) and (f) also show that the profiles of hrb;eM

zz i determined via
Eshelby model [11] are opposite to those of hrb;eM

zz i predicted based
on UC and VE10. Several facts may contribute to this inconsistency.

First, in the modeling, the cooling convection boundary condi-
tions are imposed simultaneously to the surfaces that are con-
tacted with the quenching medium (QM), e.g. water. However, in
real experiments or manufacturing processes, the plates were drop
into the QM. This means the surfaces of the plate were contacted
with the QM gradually, although the whole quenching process is
very fast. The part that was not in the QM (it has not shrunk too
much) caused constraint to the part that was in the QM (it shrunk
significantly due to quick cooling). This additional constraint was
not considered in the model.

Second, the macroscopic (homogenized/effective) thermo-
elastoplastic properties predicted via the UC and VE10 include
large errors, especially via the UC [40]. These errors cause a further
error in the computation of macroscale model (with respect to the
macroscopic strain and stress). As a result, the microscopic elastic
mismatch residual stress includes large errors, because the bound-
ary conditions of the microscale model were constructed using the
macroscopic strain.
Third, significant errors were included in the experimental
results due to data fitting process and the d0 problem [11]. These
experimental errors have also affected the determined elastic mis-
match residual stress. Therefore, in order to obtain accurate exper-
imental data, it is better to perform a measurement system
analysis that needs more measured residual strain/stress results.

Fig. 9 shows the elastic mismatch residual stress fields for
both P0 and P7. It can be seen that the images of rb;eM

xx and
rb;eM

yy fields are similar to each other, as shown in Fig. 9(a) and
(e), (b) and (f), (c) and (g), (d) and (h). Fig. 9(a)–(l) show that
the sign of rma;eM

i and rpa;eM
i in many areas on or near the

matrix/particle interface is opposite to its average nature.
Fig. 9 also shows that the sign of rma;eM

i and rpa;eM
i on or near the

boundary surfaces of MICRO1(HE, VE20, P0) and MICRO1(HE, VE20,
P7) is opposite to its average nature. For instance, in Fig. 9(b), rpa;eM

xx

in most part of particles is compressive, but rpa;eM
xx on or near the

boundary surfaces of MICRO1(HE, VE20, P0) is tensile (red color).
Such a phenomenon is believed to be caused by the boundary con-
dition effects. On the one hand, the boundary conditions of micro-
scale models are the KUBC which are constructed using the
macroscopic elastoplastic strain, see Eq. (1). The KUBC forces the
boundary surfaces to remain flat during deformation. This undesir-
able constraint pollutes the residual stress results on the boundary
surfaces [52]. On the other hand, with a low content of reinforce-
ment, the MMCs behave similarly to that of their metal matrix.
Therefore the magnitude of the macroscopic elastoplastic strain
of the MMC plate is close to that of the elastoplastic strain of the
metal matrix, but is significantly higher than that of the elastic
strain of the ceramic particles. Consequently, when the boundary
conditions are set via Eq. (1), the boundary nodes of the ceramic



Fig. 9. Elastic mismatch residual stress fields computed based on VE20: the left two rows, i.e. (a), (b), (e), (f), (i) and (j), are the elastic mismatch residual stress fields are
computed via MICRO1(HE, VE20, P0); the right two rows, i.e. (c), (d), (g), (h), (k) and (l), are the total stress fields are computed via MICRO1(HE, VE20, P7). For P0, the stress that
is smaller than �50 MPa is also shown by blue color, and the stress that is larger than 15 MPa is also shown by red color. For P7, the stress that is smaller than �15 MPa is also
shown by blue color, and the stress that is larger than 50 MPa is also shown by red color. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Elastic mismatch residual stress rb;eM
xx of a particle, which is from Fig. 8(b), computed via microscale model P0: (a) map of the particle surface, (b) cut-view of the same

particle.

X.X. Zhang et al. / Composite Structures 137 (2016) 18–32 25
particles are forced to deform as the samemagnitude as the ones of
the metal matrix, which leads to undesirable deformation of parti-
cles on the boundary surfaces.

Fig. 9 also shows that the sign of different components of elastic
mismatch residual stress in MICRO1(HE, VE20, P7) is more or less
inverse of those in MICRO1(HE, VE20, P0). This is easy to under-
stand because of the distribution of the macroscopic residual stress
as shown in Fig. 7.

To obtain clearer view of the stress fields of rpa;eM
xx , a particle in

MICRO1(HE, VE20, P0) is zoomed in Fig. 10. To obtain the exact val-
ues at different position, the elastic mismatch residual stress com-
ponents along the line AB that are computed via MICRO1(HE, UC,
P0) and those along the line CD that are computed via MICRO1
(HE, VE20, P0) are shown in Fig. 11. The lines AB and CD are defined
in Fig. 12.

Fig. 11 shows that the microscale profiles of rb;eM
i differ signifi-

cantly from each other. This reveals that the elastic mismatch
residual stress in the x–y plane has significant local anisotropy at
the microscale. This is surprising because at the macroscale the
elastic mismatch residual stress field in the X–Y plane is approxi-
mately isotropic as shown in Fig. 8, and from a statistical view
the elastic mismatch residual stress field in the X–Y plane is also
near isotropic as shown in Fig. 9.

Survey of Fig. 11(a) and (b) indicates that the variation trend
and nature of rb;eM

i computed based on UC (e.g. MICRO1(HE, UC,

P0)) are similar across the line AB, i.e. in both phases. In fact,



Fig. 11. Elastic mismatch residual stress components computed via different microscale models along lines AB and CD defined in Fig. 12: (a) MICRO1(HE, UC, P0), (b) MICRO1
(HE, UC, P7), (c) MICRO1(HE, VE20, P0), (d) MICRO1(HE, VE20, P7).

Fig. 12. Position and direction of lines in the microstructures along which the residual stresses will be analyzed: (a) line AB across the center of UC along the x direction, (b)
line CD across the center of VE20 along the x direction.

Fig. 13. Comparison between the homogenized thermal misfit residual stresses via different microscale models and the determined ones via Eshelby model from Fitzpatrick
et al. [11] in 2124Al (a) and SiC (b).
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Fig. 11(c) and (d) indicate that the variation trend and nature of
rpa;eM

zz are contrary to those of rpa;eM
xx and rpa;eM

yy in many areas of

particles. This reveals that the microscale models based on UC
introduce significant errors in the computation of microscale stress



Fig. 14. Thermal misfit plus plastic misfit residual stress fields computed via MICRO2(SUBC, VE20, P7).

Fig. 15. Thermal misfit plus plastic misfit residual stress that computed via (a) MICRO2(SUBC, UC, P7) and (b) MICRO2(SUBC, VE20, P7).
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field compared with those based on the large sized realistic
microstructure models.

4.5. Thermal misfit residual stress

Fig. 13 shows the homogenized thermal misfit residual stresses
computed via different microscale models and the determined
ones based on Eshelby model [11]. The thermal misfit residual
stress is expected to be isotropic, because the orientation of the
reinforcement is random. It can be seen that the determined
hrb;tM

i i based on Eshelby model are obviously anisotropic [11]. In
the simulations, some anisotropy of the predicted thermal misfit
residual stress will be observed because of the little anisotropy of
the 3D realistic microstructure models with finite domain size. In
the present work, the variations between different components
of hrma;tM

i i are 0.07, 0.46, 3.16 and 0.46 MPa and those of hrpa;tM
i i

are 5.10, 2.27, 19.44 and 2.26 MPa for MICRO2(KUBC, UC, P7),
MICRO2(SUBC, UC, P7), MICRO2(SUBC, VE10, P7), and MICRO2
(SUBC, VE20, P7), respectively.

The significant variations between different components of
hrb;tM

i i in MICRO2(SUBC, VE10, P7) can be explained by the aniso-
tropy of the microstructure of VE10. In VE10, only 44 particles
are included as shown in Fig. 1. With this small number of parti-
cles, the anisotropy of the 3D microstructure of VE10 cannot be
ignored. In VE20, 408 particles are included and the isotropy of
VE20 is better than that of VE10. As a return, the accuracy of the
computed thermal misfit residual stress is improved.

In order to show hrb;tM
i i more clearly, the mean homogenized

thermal misfit residual stresses are shown in Fig. 13. It can be seen
that various boundary conditions have significant influences on the
predicted hrb;tM

i i. With changing the KUBC to the SUBC, based on

UC, hrma;tM
i i changes from 118.95 to 83.24 MPa with a deviation

of �43% and hrpa;tM
i i changes from �396.79 to �406.39 MPa with

a deviation of�2%. As reported in the previous work [31], the KUBC



Fig. 16. Comparison between the computed total residual stresses and the experimental ones from Fitzpatrick et al. [11] in 2124Al and SiC.
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impose undesirable constraints and leads to ghost forces on the
boundary surfaces of the microscale models, i.e. hrtM

i i – 0, where

hrtM
i i ¼ 1

x

Z
x
rb;tM

i dx: ð5Þ

Subtracting the hrtM
i i from hrma;tM

i i and hrpa;tM
i i, then the cor-

rected hrma;tM
i i and hrpa;tM

i i predicted via MICRO2(KUBC, UC, P7)
are 87.67 and �428.06 MPa, respectively, which are very close to
the those predicted via MICRO2(SUBC, UC, P7), as shown in
Fig. 13(a) and (b).

With the SUBC, tm ¼ 0 is set for the boundary surfaces, which
guaranties that there are no ghost forces on the boundary surfaces.
It is found that hrtM

i i holds 54.7, 0, 0 and 0 MPa for UC with the
KUBC, UC with the SUBC, VE10 with the SUBC and VE20 with the
SUBC, respectively. This reveals that by applying the SUBC the
ghost force problem is solved.

As shown in Fig. 13(a) and (b), 0.17 � (�406.39) + (1.0–0.17) �
83.24 MPa = 0 MPa holds for UC with the SUBC. However, 0.17 �
(�332.52) + (1.0–0.17) � 54.06 MPa = �11.66 MPa is for VE10 with
the SUBC; and 0.17 � (�381.80) + (1.0–0.17) �
67.60 MPa = �8.80 MPa is for VE20 with the SUBC. These indicate
that by applying the SUBC the equilibrium condition of micro-
scopic stresses (ECMS) between the two phases are still not guar-
anteed, although the ghost force problem can be solved. Such a
new problem is probably caused by the anisotropy of the 3D
microstructures of VE10 and VE20. UC is isotropic along the x, y
and z direction, so ECMS holds; but VE10 (44 particles are
included) is slightly anisotropic along the x, y and z direction, so
ECMS does not hold. The isotropy of VE20 (408 particles are
included) is better than that of VE10, so the variation of ECMS
for VE20 is also reduced. Therefore, increasing the size of
microstructure, the variation of the predicted thermal misfit resid-
ual stress decreases and the results are getting closer and closer to
the real values.

In this study, non-periodic realistic microstructures are
employed in the volume elements and interface-aligned non-
regular finite element meshes for the discretization are used. The
surface meshes on opposite faces of the volume element are not
aligned in general. In this case, the discretization of periodic
boundary conditions (PBC) is more difficult than that of KUBC
and SUBC. Also the iterative solution of the linear system and the
parallelization of the algorithms are difficult for PBC. Therefore,
the PBC were not considered in this study. For PBC there are other
efficient numerical methods, which use regular grids and the fast
Fourier transform (FFT), see e.g. [28]. However, one disadvantage
of the latter methods is the worse approximation of both material
interfaces and the solution at these interfaces. Furthermore, the
advantage of KUBC and SUBC is that they predict upper and lower
bounds of the effective property. These bounds converge to the
correct value for increasing sizes of the volume elements. In other
words, if the difference between the solutions with respect to the
KUBC and SUBC is too high, then the size of the volume element
has to be increased.

Fig. 14 visualizes the thermal misfit residual stress fields. It con-
firms that the stress fields are approximately isotropic. Fig. 15
shows the profiles of rb;tM

i along the line AB in microscale model

UC and the line CD in the microscale model P7. Fig. 15(a) shows
local anisotropy of the stress fields of rb;tM

i . Especially, Fig. 15(a)

shows that rma;tM
xx is locally compressive along the line AB, while

the mean value hrma;tM
xx i is tensile. Fig. 15(b) shows that the profiles



Fig. 17. Total residual stress fields computed based on VE20: the left two rows, i.e. (a), (b), (e), (f), (i) and (j), are the total stress fields for point P0; the right two rows, i.e. (c),
(d), (g), (h), (k) and (l), are the total stress fields for point P7.

X.X. Zhang et al. / Composite Structures 137 (2016) 18–32 29
of rb;tM
i look like ‘random’, but they are not real random. The local

values rb;tM
i depend on the CTE of both phases and the morpholog-

ical features of particles. rma;tM
i near the matrix/particle interface

are low tensile values or compressive values, whereas they are ten-
sile in the area away from the matrix/particle interface as it should
be.

Fig. 15(a) shows that the maximum magnitude of rpa;tM
i com-

puted via MICRO2(SUBC, UC, P7) is close to the mean value
hrpa;tM

i i as shown in Fig. 13(b). Differently, Fig. 15(b) shows that

the maximum magnitude of rpa;tM
i computed via MICRO2(SUBC,

VE20, P7) can be as large as twice of the mean value hrpa;tM
i i as

shown in Fig. 13(b). This again reveals that the microscale models
based on the unit cell model result in unreliable local stress at
microscale compared to those based on the large sized realistic
microstructure models.

4.6. Total residual stress

Fig. 16(a)–(c) show that MULTI(HE, UC) gives the upper bound

of hrma;total
i i, while MULTI(HE, VE10) gives the lower bound of

hrma;total
i i. Fig. 16(a) and (b) show that the total variation of

hrma;total
xx i or hrma;total

yy i predicted via MULTI(HE, VE20) is �242 MPa,
and is �20 MPa larger than those computed via MULTI(HE, UC)
and MULTI(HE, VE10).

Fig. 16(d)–(f) show that MULTI(HE, VE10) gives the upper

bound of hrpa;total
i i; the profiles of hrpa;total

i i computed via MULTI
(HE, VE20) intersect those computed via MULTI(HS, UC) and
MULTI(HE, UC). Fig. 16(d) and (e) show that the total variation of

hrpa;total
xx i or hrpa;total

yy i computed via MULTI(HE, VE20) is �372 MPa,
and is �87 and �27 MPa larger than those computed via MULTI
(HE, UC) and MULTI(HE, VE10), respectively.

The rb;total
i fields at points P0 and P7 are visualized in Fig. 17. To

obtain the exact values at different positions, the total residual
stress components along the line AB that are computed via
MICRO1(HE, UC, P0) and those along the line CD that are computed
via microscale models MICRO1(HE, VE20, P0) are shown in Figs. 18
and 19. The profiles of macroscopic, elastic mismatch, thermal mis-
fit residual stresses are also compared with the total residual stress
as shown in Figs. 18 and 19.

Figs. 18 and 19 show that the profiles and total variations of

rb;total
i are dominated by those of the thermal misfit residual stress

at the microscale. This is interesting because at the macroscale,

the profiles and total variations of hrb;total
i i across the thickness

of the MMC plate are dominated by those of the macroscopic
residual stress for this quenching process [11,31]. Differently,
for the friction stir welding of MMCs, the profiles and total vari-

ations of hrb;total
i i across the weld at the macroscale are dominated

by those of the macroscopic residual stress in the matrix, and by
those of the elastic mismatch residual stress in the reinforcement
[12].

4.7. Numerical aspects

The Newton–Raphson (NR) iteration method was applied on
both the macroscale and microscale to solve the hierarchical mul-
tiscale model and hybrid-semiconcurrent multiscale model. In the
NR iteration method, the number of NR iterations which reflects
the computational efficiency is one of the most important items
of the numerical aspects.



Fig. 18. Macroscopic, elastic mismatch, thermal misfit and total residual stresses along the line AB (a)–(c) and line CD (d)–(f) for the top surface of the real MMC plate. M:
macroscopic residual stress; eM: elastic mismatch residual stress; tM: thermal misfit residual stress; total: total residual stress.
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Table 3 compares the numbers of NR iterations for the mechan-
ical part between the hybrid-semiconcurrent and hierarchical mul-
tiscale models based on UC. The stopping criterion is 1.0E�5 and
1.0E�6 for NR at the macroscale and the microscale, respectively.
Table 3 clearly shows that the hierarchical multiscale model is
more efficient than the hybrid-semiconcurrent one. Based on UC,
the number of NR iterations for the macroscale and microscale
models of the hierarchical multiscale model is about 96% and
33–36%, respectively, of those of the hybrid-semiconcurrent multi-
scale model. More details about the NR iterations of the macroscale
model and the microscale model for both the hierarchical and
hybrid-semiconcurrent multiscale models are shown in the sup-
plementary data. It can be seen that the hierarchical multiscale
model shows great improvement of the computational efficiency
compared with the hybrid-semiconcurrent multiscale model.

Besides the number of NR iterations, the degree of freedom
(DOF) of one model which reflects the computational cost is
another most important item of the numerical aspects. The larger
DOF, the larger computer memory is required for solving the
model. For thermo-mechanical models, the maximum computer
memory is determined by the DOF of the mechanical part.

In the mechanical part of both the hierarchical and hybrid-
semiconcurrent multiscale models, the mesh nodes of the macro-
scale model are 21,290 with 63,870 DOF, while the mesh nodes
of one microscale UC model are 1339 with 4017 DOF. In the hier-
archical multiscale models, the mesh nodes of the microscale mod-
els based on VE10 and VE20 are 102,339 and 786,677, respectively,
with the 307,017 and 2,360,031 DOFs for the mechanical parts,
respectively. Based on these numbers, it is easy to calculate that
if VE20 is applied in the hybrid-semiconcurrent multiscale model,
then the total DOF is 2,360,031 � 8 + 63,870 = 18,944,118.

In the hierarchical multiscale models, the microscale models
and the macroscale model are decoupled from the view of solution
scheme. Therefore, the DOF of the hierarchical multiscale models
only depends on single scale model. For instance, for the VE20
based hierarchical multiscale model, the maximum DOF during
the solution process is 2,360,031.

The used computer memory for solving MULTI(HS, UC) with
points P0–P7 is �732 MB, MACRO(UC, P0) �530 MB, MICRO1(HE,
UC, P0) �31 MB, MICRO2(SUBC, UC, P7) �35 MB, MICRO1(HE,
VE20, P0) �19 GB, MICRO2(SUBC, VE20, P7) �21 GB. Using these
data, the required computer memory for solving MULTI(HS,
VE20) with points P0–P7 can be approximately calculated by
530 MB + 19 GB � 8 Points � 153 GB, which indicates that MULTI
(HS, VE20) with points P0–P7 is difficult to be solved in a standard
workstation.

Therefore, it can be seen that the hierarchical multiscale model
gains significant advantages over the hybrid-semiconcurrent one
from the view of numerical aspects.

5. Conclusions

The work presents a hierarchical multiscale method for predict-
ing accurately and efficiently the macroscopic and microscopic
residual stresses in MMCs based on realistic digital microstructure
models. The effects of various modeling conditions on the results
and numerical aspects are discussed. The following conclusions
can be made.



Table 3
Comparison in statistics of NR iterations between hybrid-semiconcurrent (HS) and hierarchical (HE) multiscale models based on UC.

Type of multiscale model NR iterations on the macroscale NR iterations on the microscale models at different points

P0 P1 P2 P3 P4 P5 P6 P7

HS 1394 3695 3567 3353 3313 3462 3514 3524 3474
HE 1335 1226 1194 1195 1203 1198 1202 1204 1205
Ratio* 96% 33% 33% 36% 36% 35% 34% 34% 35%

* Ratio = NR iterations of hierarchical type multiscale model � NR iterations of hybrid-semiconcurrent type multiscale model � 100%.

Fig. 19. Macroscopic, elastic mismatch, thermal misfit and total residual stresses along the line AB (a)–(c) and line CD (d)–(f) for the center of the real MMC plate.
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1. The hierarchical multiscale model shows good self-consistency
and good accuracy, where the homogenized macroscopic resid-
ual stress via microscale models agrees very well with the
directly predicted one via the macroscale model. Based on the
samemicrostructure, the hierarchical multiscale model predicts
almost the same macroscopic residual stress with the hybrid-
semiconcurrent multiscale model.

2. For accurate multiscale modeling, large size realistic
microstructure model should be used. Unit cell based multi-
scale model greatly underestimates the total variations of
hrb;eM

xx i and hrb;eM
yy i across the thickness of the MMC plate. With

the hierarchical coupling method, the larger domain size of the
realistic microstructure, the larger total variations of hrb;eM

xx i and
hrb;eM

yy i across the thickness of the MMC plate. The total varia-

tions of hrb;eM
xx i and hrb;eM

yy i predicted via hierarchical multiscale
model based on VE20 agree with the experimental results very
well.

3. The macro–micro transition boundary conditions, i.e. the KUBC
and the SUBC, have significant effects on the predicted thermal
misfit residual stress. In all the microscale models, the SUBC
successively avoids the ghost force problem on the boundary
surfaces. The size of the volume element has significant effects
on the predicted thermal misfit residual stress.

4. The unit cell based multiscale models introduce significant
errors in the predictions of the microscopic residual stresses.
The realistic microstructure based hierarchical multiscale
model gives better approximations of the microscopic residual
stresses, i.e. the elastic mismatch, thermal misfit residual stres-
ses, which provide deep insight into the microscopic residual
stresses. For accurate prediction of microscopic residual stres-
ses, the realistic microstructure is required.

5. The local fluctuation profiles and the total variations of the total
residual stress are dominated by those of the thermal misfit
residual stress at the microscale, which is quite different from
the status at the macroscale. The profiles and the total varia-
tions of the total residual stress are dominated by those of the
macroscopic residual stress at the macroscale.

6. The hierarchical multiscale model gains significant advantages
over the hybrid-semiconcurrent with respect to the numerical
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effort. Based on UC, the number of NR iterations for the macro-
scale and microscale models of the hierarchical multiscale
model is about 96% and 33–36%, respectively, of those of the
hybrid-semiconcurrent multiscale model. The computer mem-
ory cost is significantly reduced for solving hierarchical multi-
scale models compared with hybrid-semiconcurrent
multiscale models.
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